
SweepCache: Intermittence-Aware Cache on the Cheap
Yuchen Zhou
Purdue University

West Lafayette, IN, USA
zhou1166@purdue.edu

Jianping Zeng
Purdue University

West Lafayette, IN, USA
zeng207@purdue.edu

Jungi Jeong*
Google

Mountain View, CA, USA
jungijeong@google.com

Jongouk Choi
University of Central Florida

Orlando, FL, USA
jongouk.choi@ucf .edu

Changhee Jung
Purdue University

West Lafayette, IN, USA
chjung@purdue.edu

ABSTRACT
This paper presents SweepCache, a new compiler/architecture co-
design scheme that can equip energy harvesting systems with a
volatile cache in a performant yet lightweight way. Unlike prior just-
in-time checkpointing designs that persists volatile data just before
power failure and thus dedicates additional energy, SweepCache
partitions program into a series of recoverable regions and persists
stores at region granularity to fully utilize harvested energy for
computation. In particular, SweepCache introduces persist buffer—
as a redo buffer resident in nonvolatile memory (NVM)—to keep
the main memory consistent across power failure while persisting
region’s stores in a failure-atomic manner. Specifically, for write-
backs during region execution, SweepCache saves their cachelines
to the persist buffer. At each region end, SweepCache first flushes
dirty cachelines to the buffer, allowing the next region to start with
a clean cache, and then moves all buffered cachelines to the corre-
sponding NVM locations. In this way, no matter when power failure
occurs, the buffer contents or their memory locations always remain
intact, which serves as a basis for correct recovery. To hide the per-
sistence delay, SweepCache speculatively starts a region right after
the prior region finishes its execution—as if its stores were already
persisted—with the two regions having their own persist buffer, i.e.,
dual-buffering. This region-level parallelism helps SweepCache to
achieve the full potential of a high-performance data cache. The
experimental results show that compared to the original cache-
free nonvolatile processor, SweepCache delivers speedups of 14.60x
and 14.86x—outperforming the state-of-the-art work by 3.47x and
3.49x—for two representative energy harvesting power traces, re-
spectively.

CCS CONCEPTS
• Computer systems organization→ Embedded systems.

*This work was done while the author was at Purdue.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3623781

KEYWORDS
compiler/architecture co-design, energy harvesting, failure-atomic
ACM Reference Format:
Yuchen Zhou, Jianping Zeng, Jungi Jeong*, Jongouk Choi, and Changhee
Jung. 2023. SweepCache: Intermittence-Aware Cache on the Cheap. In 56th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’23), October 28-November 1, 2023, Toronto, ON, Canada. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3613424.3623781

1 INTRODUCTION
Energy harvesting systems [79] are becoming more prevalent in
a wide range of applications, e.g., vehicle tire pressure sensing,
health and wellness monitoring [8, 18, 21, 75], wearable comput-
ing [10, 46, 63, 64], just to name a few. However, due to the unstable
nature of the energy sources, e.g., radio frequency (RF) and WiFi,
these applications experience frequent and unpredictable power
failure during program execution—thus being called intermittent
computation.

To resist frequent power failure, previous studies proposed a
nonvolatile processor (NVP) [57, 59, 60, 87]. It provides an illusion
of continuous execution to applications by leveraging both byte-
addressable nonvolatile memory (NVM) as the main memory and
voltage monitor based volatile data checkpointing. Whenever the
monitor detects a voltage drop below a predefined threshold, i.e., a
sign of impending power failure, NVP is interrupted to checkpoint
all registers before the failure; this is so-called just-in-time (JIT)
checkpointing. In the wake of the failure, NVP restores the regis-
ters and continues to progress from the interruption point—as if
program had never been power-interrupted.

Nonetheless, the performance of NVP is limited by NVM ac-
cesses that are the most expensive in terms of both energy con-
sumption and instruction latency. While caching hot data makes
more progress under the same amount of harvested energy, equip-
ping NVP with an SRAM cache puts significant pressure on crash
consistency mechanisms [97]. For example, upon power failure, the
volatile cache loses all the data including dirty cachelines, and there-
fore only checkpointing the registers is not sufficient for correct
recovery.

To address this problem, previous designs checkpoint and re-
store not only the register file but also the cache across power
failure; NVSRAM cache [11, 25, 48, 49, 65, 83, 85] deploys a non-
volatile counterpart to back up the whole SRAM cache right before
power failure. Since checkpointing the entire cache consumes too
much harvested energy thus limiting forward progress, Liu et al.

https://doi.org/10.1145/3613424.3623781
https://doi.org/10.1145/3613424.3623781

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yuchen Zhou, Jianping Zeng, Jungi Jeong*, Jongouk Choi, and Changhee Jung

devised a partial backup strategy [58] while others exploited hybrid
cache architecture that checkpoints only dirty cachelines [86, 94].
Meanwhile, rather than checkpointing cachelines, ReplayCache
re-executes any potentially unpersisted stores to restore consistent
memory states before resuming power-interrupted program [97]—
at the cost of persisting each store during program execution, i.e.,
giving up on persist coalescing [37, 77].

However, all prior cache-enabled designs rely on JIT checkpoint-
ing of registers which incurs nontrivial hardware complexity [26],
e.g., the voltage monitor, the backup/restoration signal handling
logic, the nonvolatile flip-flops (NVFFs1) that should be laid out next
to the volatile registers for fast data movement [44, 47, 71, 74, 78],
and the NVFFs controller; NVSRAM approaches require additional
complexity for JIT checkpointing of the SRAM cache [58, 86, 94].
Furthermore, the JIT checkpointing requires that the backup should
be performed in a failure-atomic way without power interruption,
which would otherwise fail to achieve crash consistency. Unfortu-
nately, this forces energy harvesting systems to dedicate a large
amount of hard-won energy for the failure-atomic backup all the
time—since power failure can occur at any time—leaving only a
portion of harvested energy for computation. More importantly, JIT
checkpointing might suffer capacitor degradation [13, 80], putting
the failure-atomicity at stake, and a long voltage detection delay
(Section 2.2).

To this end, this paper proposes SweepCache, a novel JIT-checkp-
oint-free design that achieves lightweight yet performant intermit-
tent computation for cache-enabled energy harvesting systems by
using intelligent compiler/architecture interaction. SweepCache’s
compiler partitions program into a series of recoverable regions—
with their live-out registers checkpointed via store instructions—so
that the region boundary serves as a recovery point for power
failure. Then, to facilitate power failure recovery, SweepCache ar-
chitecture runs them through region-level persistence, i.e., all stores
of a region including the checkpoint stores must be persisted to
NVM before the next region starts.

In case a region is power-interrupted, SweepCache holds all
data of its stores in a NVM-resident buffer—we call persist buffer—
before persisting them to the main memory (NVM). More precisely,
during region execution, all cache writebacks (i.e., dirty cacheline
evictions) are first quarantined in the persist buffer; so it acts like
a redo buffer for protecting the main memory against the stores
of power-interrupted regions. Thus, no matter when power failure
occurs, either the buffer contents or their target NVM locations
always remain intact, which serves as a basis for correct power
failure recovery. Especially for region-level persistence, when pro-
gram control reaches each region end, SweepCache flushes all dirty
cachelines to the persist buffer and then moves them to the NVM.
This effectively makes each region begin with a clean cache lacking
dirty cachelines 2, which allows any power interruption in the mid-
dle of a region to be recovered by simply restarting the interrupted
region without worrying about persisting prior regions.

Although the region-level persistence simplifies the recovery
protocol, there are a couple of challenges that should be addressed
1Some prior work such as QuickRecall [31] checkpoints registers to NVM (not NVFFs),
but it is more time- and energy-consuming [93].
2The name SweepCache is inspired by its action of having the cache swept clean
between regions.

to put SweepCache into practice. First, the persistence delay at
each region end incurs significant performance degradation be-
cause the next region cannot start until the previous one becomes
fully persistent in NVM, which is the case for ReplayCache though
it exploits in-region parallelism by ILP. To minimize the delay across
regions, SweepCache introduces region-level parallelism overlap-
ping the persistence latency with the execution of the following
region. In other words, the next region always speculatively starts
without delay as if the prior region were persisted. In addition,
an inherent benefit of region-level parallelism is that it hides the
latency for persisting the data (e.g., registers and dirty cachelines)
that prior schemes [11, 25, 31, 48, 49, 58, 65, 85, 97, 98] must pay
for JIT checkpointing when power is about to be cut off.

Second, since the persist buffer exists on the data path, the way to
handle load cache misses becomes significantly complicated. They
should search the buffer—in case the latest value is held therein—
before accessing the NVM, which increases the critical path of
handling the cache misses. This is particularly problematic in terms
of performance in that the persist buffer is allocated in NVM suffer-
ing from the same latency and bandwidth issues. To overcome this
challenge, SweepCache makes an important observation that the
persist buffer is empty most of the time due to the relatively short
region size and the low cache miss rate of the benchmarks tested.
The implication is that the buffer search can often be bypassed to
shorten the critical path of load misses.

Taking that into account, SweepCache devises a single bit called
empty-bit to figure out if the persist buffer is currently empty or
populated. That is, load misses should first consult the empty-bit
to decide whether to bypass the buffer search. According to our ex-
perimental results, this simple bit consultation allows SweepCache
to direct 99% of load misses to NVM without accessing the persist
buffer, thereby realizing the full potential of a volatile cache for high-
performance intermittent computation. The experiment with 26
benchmarks from Mibench [24] and Mediabenchs [45] shows that
compared to the original cache-free NVP, SweepCache achieves
speedups of 14.60x and 14.86x—outperforming the state-of-the-art
work (ReplayCache) by 3.47x and 3.49x—for two representative
energy harvesting power traces, respectively.

2 BACKGROUND AND MOTIVATION
2.1 Basics of Energy Harvesting Systems
Energy harvesting systems collect ambient energy, e.g., RF and Wi-
Fi, in a small capacitor [6, 7, 13, 14, 16, 39, 52, 81, 82]. However, due
to the unstable energy source and the lack of battery, the systems
undergo frequent power failure [3, 14, 16, 61, 62, 89]. While they
employ NVM as the main memory to survive power failure, it
results in data loss of volatile registers.

Thus, prior studies proposed JIT checkpointing that persists the
register values right before power failure [17, 31, 59, 60]. For ex-
ample, NVP checkpoints all registers in NVFF closely integrated
into the volatile register file [59, 60], while QuickRecall [31] writes
the registers to NVM. As shown in Figure 1(a), they both leverage
a voltage monitor to detect impending power failure. To be more
specific, if the voltage becomes lower than the predefined threshold
(e.g.,𝑉𝑏𝑘), NVP is interrupted and copies the register values to NVFF
to save the architectural state. When the voltage comes back to a

SweepCache: Intermittence-Aware Cache on the Cheap MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

RF

NVM

checkpoint

RF
checkpoint

write through

RF
checkpoint

NVM NVM

Voltage
Monitor

checkpoint signal restore signal

Voltage
Monitor

Voltage
Monitor

checkpoint signal restore signal checkpoint signal restore signal

RF
checkpoint

write back

NVM

Voltage
Monitor

checkpoint signal restore signal

write back

RF
SRAM
Cache

write back

write back

Region Persistence

(a) NVP (b) NVP + WT-VCache (c) NVP + WB-NVSRAM (d) ReplayCache (e) SweepCache

NVFF

NVFF NVFF

SRAM Cache
NVM Backup

NVFF

SRAM Cache

ch
eckp

o
in

t

resto
reSRAM Cache

NVMPersist
Buffer

Figure 1: Architecture of energy harvesting systems; green corresponds to non-volatile parts while yellow to volatile parts.

certain level (e.g., 𝑉𝑟𝑡), the register values are restored by using the
checkpointed values in NVFF, and NVP then resumes exactly from
where it had been interrupted.

Since NVP uses NVM as the main memory without a volatile
cache in between, all committed stores are guaranteed to be per-
sistent in NVM, i.e., a store is the granularity of failure atomicity
in the architecture. By combining the JIT checkpointing and the
nonvolatile main memory, cache-free energy harvesting systems
such as NVPs can guarantee crash consistency even in the presence
of frequent power outages.

However, energy harvesting systems often refrain from exploit-
ing a volatile cache mainly due to its crash consistency challenge.
Nevertheless, equipping them with the cache has a high potential to
improve the performance and energy efficiency [11, 48, 49, 97], e.g.,
cache-enabled NVP can deliver further forward execution progress
by avoiding NVM accesses on cache hits compared to the original
cache-free design. Therefore, enabling caches can open new use
cases of energy harvesting systems and put them into practice.

2.2 Enabling Caches with JIT Checkpointing
Recent work has studied the problem of enabling volatile SRAM
caches for energy harvesting systems [4, 11, 25, 48, 49, 65, 83, 85,
97]. However, the problem turns out to be challenging because
volatile caches may lead to crash inconsistency—unless they are
backed up and restored across a power outage. For example, at the
moment of an outage, all cache contents disappear, including dirty
cachelines. Thus, merely restoring register values is not sufficient
for correct recovery—resulting in inconsistent memory states across
the outage.

There have been multiple approaches to dealing with such a
memory inconsistency issue for cache-enabled energy harvesting
systems. First, a straightforward but naive solution is to leverage
a volatile write-through cache shown in Figure 1(b). Here, both
write-through cache and NVM always maintain the same value
for every committed store instruction, i.e., it is possible to recover
the consistent program state without worrying about the loss of
volatile cache data. However, the write-through cache pays for a
high persistence overhead in that each store instruction cannot be
committed until the corresponding cacheline is written to NVM.
Such a long store latency is particularly harmful to energy harvest-
ing systems since they do not use out-of-order pipelines that can

tolerate the latency. Meanwhile, the frequent NVM writes consume
a large amount of harvested energy.

As shown in Figure 1(c), the second approach (NVSRAM) uses
a volatile write-back cache with the nonvolatile counterpart as
a backup storage [11, 25, 48, 49, 58, 65, 83, 85]. NVSRAM, com-
bined with JIT checkpointing, flushes all SRAM cache contents
(or only dirty cachelines) to the nonvolatile counterpart before
impending power failure, thus being free from the memory incon-
sistency problem. However, even backing up only dirty cachelines
requires NVSRAM to reserve a sufficient amount of energy which
can afford the whole-cache backup to guarantee failure-atomic JIT
checkpointing in case all cachelines are dirty. Another problem is
that for swift backup/restoration, NVSRAM resorts to parallel data
transfer; this ends up with non-trivial energy consumption and
high inrush current, which may cause significant energy/reliability
issues. Moreover, the NVM counterpart also results in extra area
costs, e.g., a 32KB NVSRAM cache leads to over a 4.8x larger chip
area cost [58].

The state-of-the-art work, ReplayCache [97], enables volatile
caches in a more advanced way than prior work. Unlike NVSRAM,
ReplayCache does not need a NVM backup for the SRAM cache as
shown in Figure 1(d). Instead, ReplayCache leverages so-called store
integrity; it preserves the operands of each store so that potentially
unpersisted stores left behind power failure can be replayed for
recovery. To achieve this, the compiler partitions program into a
series of regions where the store integrity is enforced, i.e., none
of store registers are overwritten in each region. In the wake of
power failure that interrupted a region, ReplayCache first replays its
unpersisted stores to keep NVM states up-to-date and then resumes
program from the interruption point. In this way, ReplayCache
resolves the memory inconsistency problem.

Yet, for each region to fully use the register file without breaking
the store integrity of the prior region(s), ReplayCache cannot start
a region until all stores of the prior region are persisted. To this
end, ReplayCache persists them asynchronously using clwb during
region execution with a store fence placed at the end of each region.
Apart from the possible persistence delay between regions, Replay-
Cache loses persist coalescing [37, 77]—in that every single store is
followed by the 64-byte cacheline flush (clwb)—causing high write
amplification and energy consumption. Moreover, to ensure correct
recovery, ReplayCache should load the data from NVFF (or NVM)

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yuchen Zhou, Jianping Zeng, Jungi Jeong*, Jongouk Choi, and Changhee Jung

to execute a recovery block for replaying stores sequentially, which
leads to slow recovery.

In particular, a common problem for the aforementioned prior
schemes is that they all rely on JIT checkpointing which incurs
aforestated hardware complexity. More importantly, the prior work
must set voltage thresholds high to ensure the failure-atomic backup,
which leaves less energy for computation and therefore degrades
performance. It is also important to note that, JIT checkpointing is
vulnerable to a capacitor degradation phenomenon as demonstrated
by recent work [13, 80], e.g., the capacitor may deliver only 90% of
its original output in roughly 7 days with typical power traces. This
implies that the voltage threshold should be set higher than usual
for JIT backup to work safely in case the capacitor degrades over
time. Unfortunately, such a high voltage margin incurs a huge per-
formance overhead, e.g., in our evaluation, a 20% threshold increase
leads to a 1.4x slowdown while a 40% increase to a 2.5x slowdown.

Finally, the voltage monitor of JIT checkpointing usually must
detect two different voltage thresholds for backup and restora-
tion where 𝑉𝑟𝑒𝑠𝑡𝑜𝑟𝑒 > 𝑉𝑏𝑎𝑐𝑘𝑢𝑝 according to MPPT (maximum
power point tracking) [91]; instead, SweepCache only needs a sin-
gle voltage threshold to indicate an appropriate recovery point, i.e.,
when to reboot. The takeaway is that the prior schemes rely on a
more complex voltage detection circuit than SweepCache’s single-
threshold voltage comparator, thereby causing longer voltage de-
tection delays—also known as propagation delays. For example, in
prior work [23, 58, 87, 97], the voltage detector has 1.5 us (𝑇𝑝ℎ𝑙) and
10.3 us (𝑇𝑝𝑙ℎ) propagation delays with at least 20 uA current supply
whereas a simple same-year-technology voltage comparator [28]
has only 0.88 us (𝑇𝑝ℎ𝑙) and 1.1 us (𝑇𝑝𝑙ℎ) propagation delays with 12
uA current supply.

3 SWEEPCACHE APPROACH
SweepCache is JIT-checkpoint-free and lightweight. It pursues per-
formant cache-enabled energy harvesting systems that consume
the majority of harvested energy for computation, instead of reserv-
ing the energy for JIT checkpointing. However, it is challenging to
provide crash consistency for both a register file and a cache with-
out the JIT checkpointing that facilitates the checkpoint/recovery
to a large extent.

To address this challenge, SweepCache proposes a compiler and
architecture co-design that performs region-level persistence and
failure recovery at a low cost. With SweepCache’s compiler, the
input program is partitioned into a series of regions where live-out
registers are checkpointed via store instructions, and the region
boundary serves as a recovery point of power failure (Section 3.1).
Besides, as shown Figure 1(e), SweepCache presents a persist buffer.
It acts as a redo buffer not only to keep the main memory from
the stores of a power-interrupted region but also to delegate the
persistence of the data being stored in each region at its end, letting
the pipeline keep executing the following regions to hide the per-
sistence latency (Section 3.2 & Section 3.3). Across power failure,
SweepCache consults the persist buffer, if necessary depending on
where the program is interrupted (e.g., in-region or between re-
gions), to resume the interrupted program correctly (Section 3.4).
Figure 2 shows the design overview of SweepCache.

3.1 Compiler-Assisted Register Checkpointing
To eliminate expensive hardware structures for JIT checkpointing
volatile registers, SweepCache leverages compiler techniques to
transform program source code so that register values are check-
pointed (via stores) to NVM in a region granularity and thus can
be used for region-level failure recovery.

Unfortunately, it is hard to design such a checkpoint-based power
failure resilient scheme because of two problems: (1) determining
which registers should be checkpointed to NVM and (2) where to
put register checkpoints. To address the problems, SweepCache
leverages the persist buffer directed region formation [16, 27, 35,
99]; it partitions the program to a series of regions (a sequence of
instructions regardless of branches) so that the persist buffer never
overflows during the execution of each region with its live-out [2]
registers checkpointed. As shown in Figure 2(a) where the stores
are normal stores but ckpt stores are register checkpointing stores,
the number of stores in each region is guaranteed to be smaller
than the buffer size (see more in Section 4.1).

3.2 Region-Level Store Persistence
The main obstacle to enabling a volatile cache in energy harvesting
systems is that the partial updates from the cache to NVM cause an
inconsistency across power failure. Unlike JIT-checkpoint designs,
SweepCache has no way of interrupting a program on an outage
and restoring the cache in the wake of the outage, thus being unable
to resume from the interruption point. Without the luxury of JIT
checkpointing, SweepCache instead offers persistence and recovery
in a region granularity by deploying the persist buffer as a safety
net to prevent partial updates for crash consistency.

To be more specific, SweepCache utilizes the persist buffer as
an intermediate between the cache and NVM. That is, spatially,
the persistence process of SweepCache is divided into two phases
(s-phase1 and s-phase2) depending on actions made to the persist
buffer; as shown in Figure 2(b), SweepCache writes back the cache
to the persist buffer (1○), and then it flushes the buffer to NVM 3(2○).
But temporally, the persistence process is split into three phases.
During the execution of each region, all the writebacks from the
cache are piled in the persist buffer (t-phase1), keeping NVM in-
tact to protect NVM from them, i.e., partial updates, in case the
region is power-interrupted. At the region boundary where the
region finishes, SweepCache flushes all the dirty cachelines into
the persist buffer (t-phase2). Finally, the persist buffer contents are
all moved to NVM4 (t-phase3). In case power failure occurs in the
middle of t-phase3, the persist buffer must be NVM-resident, which
would otherwise lose the buffer contents that have not yet been
persisted in NVM; such partial NVM updates make it impossible
to ensure correct power failure recovery. To deal with the power
failure during t-phase3, SweepCache restarts t-phase3 in the wake
of the failure with accessing the NVM-resident persist buffer (more
details are deferred to Section 4.2).

In this way, SweepCache ensures correct region-level persistence
no matter when power failure happens in that either the NVM or
3Additional details, e.g., why 2 persist buffers, are deferred to Section 3.3
4The buffer is FIFO and can have multiple entries of the same cache line in case of
multiple evictions. When SweepCache flushes the buffer to NVM, the younger one
always overwrites the old one.

SweepCache: Intermittence-Aware Cache on the Cheap MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Region 1

Region partition and checkpoint the registers at a
region granularity.

(a) Compiler-Assisted Register Checkpointing

① s-phase1

 ② s-phase2

(b) Region-Level Store Persistence (c) Region-Level Failure Recovery

power failure

If Region N not finishes its s-
phase1, then

Source
Program

store
…

ckpt store
...

Region N

store
…

ckpt store
...

Region Boundary

Cachestore

ckpt store

triggers

write back

flush all the
dirty cache

lines

①

②

write back

Persist
Buffer

Persist
Buffer

NVM

Persist
Buffer

Persist
Buffer

NVM

Register
Checkpoint

Storage

Persist
Buffer

Persist
Buffer

NVM

Register
Checkpoint

Storage

Region N

Region N + 1

Region N

Region N + 1
Otherwise,

store
…

ckpt store
...

store
…

ckpt store
...

t-phase1

t-phase2

t-phase3

+ =

=

rollback to the beginning of
Region N.

rollback to the beginning of
Region N + 1.

Compiler Region 2
store
…

ckpt store
...

Region N

...

Buffer
Size

Buffer
Size

Buffer
Size

Persist
buffer

size

Figure 2: The high-level view of SweepCache compiler and architecture

the buffer can always remain consistently available. In particular,
for fast data movement from the buffer to NVM, SweepCache lever-
ages direct memory access (DMA), an existing hardware component
in commodity energy harvesting systems, e.g.,MSP430 series mi-
crocontrollers have already adopted DMA [30, 88].

Note that, unlike the traditional 2-phase commit, the 3-phase de-
sign of SweepCache effectively offloads the data handled by the first
phase of the original 2-phase commit to the t-phase1. This design
improves the performance since the in-region writebacks during
the t-phase1 can be overlapped with regular program execution,
entering the last phase faster than the original 2-phase commit. Yet,
to simplify the description, the following sections use two phases
(1○ and 2○) in the spatial context to refer to our persistence process.

3.3 Region-Level Parallelism
To achieve the region-level persistence, a region cannot start exe-
cuting until the previous region is persisted, see persistence latency
in Figure 3(a). One critical issue here is that the prolonged persis-
tence latency at each region boundary can significantly degrade
overall performance. To mitigate this issue, SweepCache introduces
region-level parallelism, which allows the next region to specula-
tively execute as if the prior region were already persisted. This
helps to hide the persistence latency but ends upwith structural haz-
ards as adjacent regions compete for the persist buffer. Specifically,
before the prior region finishes its persistence, the next region’s
speculative execution can overwrite the buffer, thereby making the
region-level persistence fail to achieve crash consistency. Ideally,
each region should be assigned a separate buffer, which incurs non-
trivial hardware costs. Alternatively, the following region should
wait for the prior region to complete its persistence, which hurts
performance a lot. Fortunately, it turns out that two persist buffers
are sufficient to provide high parallelism (Section 6.3) hiding the
persistence latency without compromising the crash consistency
guarantee.

Figure 3(b) shows how SweepCache handles 3 consecutive re-
gions with the region-level parallelism. Since the 2 persist buffers
are assigned to the first 2 regions respectively, Region 2 can start
immediately after Region 1 ends due to the absence of the struc-
tural hazard. As shown in the figure, SweepCache effectively hides
the persistence latency of Region 1 by overlapping it with the exe-
cution of Region 2. Nonetheless, since SweepCache only has two
persist buffers, Region 3 should not start to execute until Region

Timeline

Region 1

Write back to buffer Write back to NVM

Region 2

Write back to buffer Write back to NVM

Persistence Latency

s-phase1 s-phase2

(a) No Parallelism Case

Timeline

Region 1

Write back to buffer Write back to NVM

Region 2

Write back to buffer Write back to NVM

Region 3

Write back to buffer

Persistence Latency

Write back to NVM

(b) Parallelism Case

Figure 3: Hiding region-level store persistence latency

1 completes its second phase (s-phase2) to avoid the structural
hazard, i.e., 𝑇𝑤𝑎𝑖𝑡 in the figure indicates the actual time Region 3
should wait for5. According to experimental results, the efficiency
of SweepCache’s parallelism is over 91%, i.e., 𝑇𝑤𝑎𝑖𝑡 is insignificant
most of the time. Such effective region-level parallelism is the basis
for SweepCache to checkpoint the register values into NVM in a
performant way—though it lacks expensive NVFF/NVSRAM. In con-
trast, JIT-checkpoint designs cannot hide the latency of persisting
both the register file and the cache in their backup stage.

3.4 Region-Level Failure Recovery
To recover from power failure, SweepCache takes appropriate re-
covery actions according to where the failure occurs, i.e., before
the completion of s-phase1 or after that as shown in Figure 2(c).
Since the persist buffer is a nonvolatile intermediate between the
cache and NVM, its persistence status indicates whether a region is
persisted or not. If the buffer’s persistence process is incomplete at
the point of power failure, i.e., it occurs before s-phase1, the current
region is not persisted yet while not affecting the NVM state (see
5To keep sequential store persistence ordering, SweepCache also guarantees that the
second phase of a region should not start until the prior one completes its second
phase, which might otherwise overwrite NVM locations. However, this situation is
rare and thus not depicted in the figure.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yuchen Zhou, Jianping Zeng, Jungi Jeong*, Jongouk Choi, and Changhee Jung

Section 4.2 for more details). Thus, in the wake of the power failure,
SweepCache discards the buffer contents and rolls back to the begin-
ning of the power-interrupted region for correct recovery. On the
other hand, if the buffer’s persistence process is already complete
upon power failure, i.e., it occurs after s-phase1, the region is con-
sidered successfully persisted, and therefore SweepCache restarts
from the next region’s beginning after power comes back as shown
in the figure.

4 IMPLEMENTATION DETAILS
4.1 SweepCache Compiler
High-Level Workflow: SweepCache leverages the size of the per-
sist buffer to guide region partitioning with the store threshold
equal to the buffer size—conservatively assuming that every store
leads to a cacheline writeback. During the partitioning process,
SweepCache’s compiler counts the number of stores while travers-
ing the program’s control flow graph (CFG). Once this count reaches
the predefined threshold (i.e., buffer size), a region boundary is intro-
duced to start a new region thereafter. The compiler then analyzes
the live-out [2] registers of the region and inserts checkpoint stores
to save them into a designated register checkpoint storage in NVM.
Additionally, the program counter (PC) is saved at the end of the
region, which serves as a recovery point in case the next region is
power-interrupted. By reading the value of the PC, SweepCache
can roll back to the corresponding recovery point to re-execute the
interrupted region.

Nevertheless, the region formation is not as simple as sequen-
tially performing region partitioning and live-out register check-
pointing because of circular dependence. That is, on the one hand,
checkpoint stores influence the number of stores that can be accom-
modated in a region. On the other hand, the number of stores can
change the location of the initial region boundary, possibly leading
to more live-out registers being checkpointed, in which case the
region boundary might move further, thus forming a circular depen-
dence. To break the dependence, SweepCache’s compiler leverages
the region formation techniques of prior work [16, 35, 56, 99] like
the following.

Region Formation: The compiler first partitions program at
callsites and loop headers. Specifically, it inserts a region boundary
at all the entry and exit points of functions. Then, to avoid exceeding
the store threshold in a loop, a region boundary is also placed at
the header of every loop6, i.e., each loop iteration starts/ends with
the boundary, as shown in Figure 4(a); of course, the loop body may
need additional boundaries (not shown in the figure) to keep the
store count of their regions under the threshold during the CFG
traversal. In this way, the number of stores per region is guaranteed
not to exceed the threshold even for a long-running loop with many
iterations no matter how many stores exist in the loop body.

However, for a small loop body comprised of a few stores, such
a boundary at the header could end up with a limited region size.
For example, as shown in Figure 4(a), each iteration forms a region
with 5 stores, which is way smaller than it should be assuming the
store threshold is 10. The problem of such a loop-header boundary
is that it might generate many small regions, which could in turn
6The only exception is the loop that has no store in the loop body.

increase the number of checkpoint stores due to additional live-outs
across more region boundaries. To tackle this issue, SweepCache’s
compiler leverages loop unrolling to enlarge the region size, as
shown in Figure 4(b) where the loop body is unrolled two times
making the region size 2x bigger.

Loop Header

Loop Body
store

ckpt store…

Loop Body
store

ckpt store…

ExitLoop Header

Loop Body
store

ckpt store…

Exit

(a) Loops without unrolling,
each region has 5 stores.

Region Boundary

Store Threshold = 10
(b) Loops with unrolling,

unrolling factor = 2,
each region has 10 stores.

5 stores

10 stores

Figure 4: Region formation for loops

After the initial region formation, the compiler proceeds to the
step of checkpoint store insertion. In particular, to facilitate this
step, the compiler first splits the basic blocks that have region
boundaries therein, thereby ensuring that regions always start at
the beginning of basic blocks. That is because of the granularity
mismatch of the two compiler analyses, i.e., liveness analysis is
generally conducted at the level of basic blocks whereas checkpoint
store insertion is performed at the granularity of regions. After the
basic block splitting, the compiler analyzes the regions to identify
the live-out variables and inserts their checkpoint stores—right
after the last update point of the variables in each region.

Then, the compiler traverses the CFG again in a topological order
trying to combine the initial regions, whose store count is smaller
than the threshold, into larger regions as much as possible. This
leads to two benefits: (1) extending the region size and (2) often
eliminating many checkpoint stores in that the live-out register
of their region is no longer live—provided the following region
being merged redefines the register. Because of the region com-
bining, the store count of the merged region may exceed the store
threshold; if that is the case, the compiler places a new boundary
in the middle of the region to guarantee its stores never overflow
the persist buffer and recalculates the number of live-out registers
of the newly partitioned regions. It is important to note that this
merging/repartitioning process is repeated until no region has more
stores than the threshold, which resolves the issue of the circular
dependence. Nevertheless, it would be a mistake to expect that the
resulting regions have the same number of stores as the threshold;
recall that the threshold indicates the maximum number of stores
in each region.

Checkpoint Storage Management: To facilitate access to regis-
ter checkpoints during power failure recovery, the compiler maps
all registers to a global array with dedicated slots. For example,
register 𝑟0 is mapped to index zero, i.e., a checkpoint store uses
fixed destination addresses depending on which register is check-
pointed, for them to be easily accessed through an index of the

SweepCache: Intermittence-Aware Cache on the Cheap MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

array. This is feasible since the number of architectural registers is
predetermined by ISA. In the wake of power failure, SweepCache’s
recovery runtime reloads the values of the checkpointed live-out
registers from NVM using the mapping in order to ensure crash
consistency.

Forward Progress and I/O Functions: To guarantee forward
progress without stagnation [14, 15, 82], SweepCache leverages the
EH model [82] for estimating the worst-case energy of a region
execution and its recovery. That is, among the regions, the compiler
checks if some are too long to be executed with the underlying
capacitor energy and splits such a long region so that it can be
finished across power failure. Finally, supporting non-recoverable
operations such as I/O operations has still remained an open prob-
lem. However, since SweepCache places region boundaries at all
callsites, the function that implements I/O operations is treated as a
separate region. Then, SweepCache can leverage the techniques in
prior work [15] to guarantee I/O operations always start with a fully
charged capacitor. Thus, I/O operations can always successfully
complete without power failure.

4.2 Recovery Protocol
To ensure the correct recovery, SweepCache leverages the persis-
tence status of persist buffer to determine appropriate protocols.
To manage the persistence status, SweepCache introduces two ad-
ditional bits, namely phase1Complete and phase2Complete, for
each buffer. These bits indicate whether the corresponding phase
is complete, with their initial values set to 0. When a phase is com-
pleted, the corresponding bit is set to 1. These bits are stored in a
single persistent register that exists in a memory controller and gets
read/written by a similar controller logic to that of prior work [101].
At runtime, depending on the power failure points, SweepCache
has different persistence statuses corresponding to a different status
of the phaseComplete bits: (0, 0), (1, 0), and (1, 1).

The first case is (0, 0), meaning a power outage occurs before the
s-phase1. In such a case, buffer persistence is not complete and the
NVM is not affected at all. After power comes back, SweepCache
ignores the contents of the buffer and restores the saved registers
including the PC register, and jumps to the PC. Note that the PC
here points to the beginning of the current region. This PC was
preserved at the end of the preceding region. The PC saved at the
current region that points to the start of the subsequent region has
not yet been written to the NVM.

For the second case, i.e., (1, 0), indicating that s-phase1 is complete
but s-phase2 is not. In such a case, since the first phase is complete,
all the updated data are already in the buffer. Because the buffer is
non-volatile, all the data including the saved register values still
remain in the buffer during the power outage. Thus, SweepCache
does not need to roll back to the beginning of the current region.
Instead, SweepCache re-executes the second phase. After that, it
restores the saved register values and jumps to the PC. Here, the
PC points to the beginning of the next region. Let us explain here
why SweepCache needs to flush dirty cachelines at each region end.
Upon power failure, the cache loses all the data including the dirty
cachelines. However, during regions, only evicted dirty cachelines
are written back. Thus, jumping to the next region to do the recov-
ery without considering those non-evicted dirty lines (which may

include register checkpoint stores) cannot realize correct recovery.
Therefore, SweepCache needs to flush all the dirty cachelines at
each region boundary. Note that the flushed data still remain in the
cache with their dirty bits reset to 0.

For the third case, i.e., (1, 1), both the two phases are complete.
In such a case, the recovery is simple. SweepCache just restores the
saved register values in NVM and jumps to the PC that points to
the beginning of the region interrupted by the power outage.

4.3 Write-After-Write
To ensure region-level persistence, SweepCache must be careful
about write-after-write (WAW) cases. Since SweepCache utilizes
region-level parallelism to hide the persistence latency, a dirty
cacheline of the prior region may be overwritten by the current
region’s stores before being written back to the persist buffer. To
avoid this problem, SweepCache leverages the phase1Complete
bit, as mentioned in Section 4.2, in conjunction with the cache
dirty bits to indicate whether a specific cacheline resides in the
s-phase1 of the preceding region. To be more specific, if the prior
region’s phase1Complete is 0 and the dirty bit is 1, meaning that
the cacheline is awaiting flush, the store of the current region that
tries to write to the same address of the dirty cacheline needs to
wait until the phase1Complete bit becomes 1. Such a method can
sometimes cause unnecessary waiting. For example, the previous
region’s phase1Complete bit is 0 but the dirty cacheline is caused
by the current region, we still wait even if this WAW does not cause
any persistence issue. However, such a case is very rare in our
evaluations so it is acceptable for such rare unnecessary waiting.

4.4 Cache Misses Handling
In cases where a cache miss occurs, SweepCache first checks the
persist buffer before accessing NVM, as the most recent data may
still be present in the buffer. To search for the requested data in the
buffers, CAM (content addressable memory) would be the fastest
technology, but too expensive for energy harvesting systems. Se-
quential search is energy-efficient, but too slow since two buffers
may need to be searched if the previous region has not completed
its s-phase2. Therefore, SweepCache requires a cost-effective and
high-performance search method for handling cache misses.

Since SweepCache only needs to consult the buffers at the cache
miss cases, the cache miss rate determines the frequency of consult-
ing the buffers. However, our evaluation shows that the average
cache miss rate is only 3.43% when the cache size is 4kB, meaning
that it is affordable for SweepCache to leverage a sequential search
logic rather than the expensive CAM-based associative search.

Though the sequential search is affordable because of the low
cache miss rate, it is still slow because it may incur double NVM
accesses for cache miss cases. Whenever a cache miss happens,
SweepCache searches the persist buffers first. If the data is not
found, SweepCache accesses the NVM.

However, in our evaluations, we found that the persist buffers
only contain a few entries and are empty most of the time (we do
not consider the flushed entries at the region boundary since they
still remain in the cache and do not cause any cache misses). This is
not difficult to understand. For a certain cacheline, it has to satisfy
two conditions to be written back to persist buffer: (1) it is dirty; (2)

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yuchen Zhou, Jianping Zeng, Jungi Jeong*, Jongouk Choi, and Changhee Jung

it is evicted. For the first condition, the number of dirty cachelines
in each region is limited since SweepCache always flushes dirty
cachelines at each region end, leaving a clean cache for the next
region. For the second condition, based on the low cache miss rate,
the eviction rate is also low.

Given these, SweepCache leverages a simple but effectivemethod
— deploying a single bit (referred to as empty-bit) to indicatewhether
the buffer is empty. Thus, for a cache miss, SweepCache only does
the sequential buffer search when the bit is 0, i.e., the buffer is not
empty7. Otherwise, it bypasses the buffer. Thanks to the low fill
rate of the buffer, empty-bit bypasses 99% of buffer searches in
our evaluation, realizing high search performance with pretty low
hardware costs (only two bits for two persist buffers).

4.5 The Size of the Persist Buffer
The size of the buffer determines the number of entries it can hold,
which in turn sets the store threshold used by the compiler. This
threshold then affects the region size. Longer regions are more
likely to be interrupted during their s-phase1, which can cause slow
forward progress due to our roll-back recovery property. Moreover,
more stores may generate more evictions, increasing the frequency
of searching buffers in cache miss cases. However, longer regions
tend to hide more persistence delay, leading to higher region-level
parallelism. Therefore, determining the size of the persist buffer is
a trade-off to achieve optimal performance.

We experimentally found that setting the size (threshold) to 64
has relatively small average store numbers and high parallelism.
The buffer entry consists of address and data where data has the
same granularity as the cacheline (64B).

4.6 Write-Back-Instructive Table
SweepCache is required to flush all the dirty cachelines at the end
of each region (Section 3.4) in order to guarantee the correct re-
covery and region persistence. To realize this, SweepCache needs
to scan all the cachelines at each region boundary to determine
which cachelines are dirty. However, such a scan process not only
lengthens s-phase1 but also impacts the accuracy of dirty cacheline
identification (before scanning all the cachelines, the next region’s
stores may cause new dirty cachelines; flushing the next region’s
dirty cacheline may cause incorrect power failure recovery).

To eliminate such overhead and guarantee correct recovery,
we leverage a small SRAM bit-table (referred to as write-back-
instructive table) to indicate which cachelines are dirty at each
region boundary. The table is updated during the region execution,
allowing the identification of all the dirty cachelines at each region
boundary by reading the table instead of scanning the entire cache.
As with the persist buffer design, to prevent structure hazards be-
tween regions, SweepCache employs two tables. The table size is
equal to the number of cachelines (one bit indicates one cacheline),
e.g., for a 4kB cache with a 64B block, a 64-bit table is enough.

5 DISCUSSION
In general, frequent power failure is a norm of energy harvesting
systems, in which case SweepCache performs the best regardless
7Since the buffer is FIFO, every time the younger one is found first if there are multiple
entries for the same cacheline.

of energy sources (RF, solar, thermal) as will be shown in Figure 10.
However, for a system backed with a bulky supercapacitor that can
sustain for a while, SweepCache might waste harvested energy for
region-level persistence (Section 3.2)—saving the data being stored
in regions to NVM in case they are power-interrupted. That is be-
cause the regions rarely encounter power failure owing to abundant
energy piled in the supercapacitor, though it causes several issues,
i.e., slow reboot time, bulky area cost, and energy inefficiency due
to the leakage proportional to the size of a capacitor.

While SweepCache mainly targets tiny energy harvesting sys-
tems (e.g., wearables) backed with energy-efficient small capacitors
with a few hundred nF 8, it is possible to mitigate the problem of
wasting energy for supercapacitor-equipped systems. To achieve
this, we aim to enlarge our region size so that the region-level persis-
tence is conducted less frequently thereby reducing the overhead.
There are a couple of ways to do that: (1) small function inlin-
ing [70] and (2) aggressive loop unrolling including its speculative
optimization [35]. We leave applying them as future work.
Multi-core: To the best of our knowledge, there is no commodity
multi-core energy harvesting systems. In the literature, a single
in-order core is predominantly used due to the power efficiency
issue, e.g., RF energy harvesting cannot afford to power even dual-
core systems. For this reason, we do not delve into the topic of
multi-core systems on purpose.

6 EVALUATION
We implement compiler techniques described in Section 4.1 on
top of the LLVM 13.0.1 [42]. All evaluated programs are compiled
with the default O3 flag except for our compiler optimizations. To
measure the impact of runtime libraries as well, we instruct the
linker to link evaluated programs against theMUSL C library which
is also compiled by SweepCache’s compiler with our compilation
optimizations enabled.

We conduct our experiments atop the gem5 [5] with ARM ISA to
simulate a single-core in-order processor as the original NVP simu-
lator [23]. As in prior work [57, 97], SweepCache only modifies the
L1DCache as the volatile cache while maintaining the L1ICache as
an NVM cache. In all cache-enabled designs, the default cache size
is configured as 4kB with a 2-way association. The capacitor size is
set to 470nF, consistent with prior real fabricated chips [60, 87, 93].
The propagation delay of JIT-checkpoint designs is configured in
line with prior work [23, 58, 87, 97]. In particular, since SweepCache
does not have a backup stage thus only has the restore propagation
delay. To precisely set the delay, we deliberately selected the tech-
nology [28] built in the same year as the JIT-checkpoint designs’
voltage detector. By default, SweepCache’s persist buffer size is
set to 64. Other configurations [16, 23, 97] can be seen in Table 1.
We evaluated applications with two real power traces (RFHome
and RFOffice) which were collected from real RF energy harvesting
systems [23].

The rest of this section compares two variants of SweepCache
(with NVM Search or Empty-Bit Search, see Section 4.4) against
ReplayCache and NVSRAM (only backups dirty cachelines), in
terms of their speedups over the cache-free baseline NVP.
8Note that such a capacitor size can still support peripherals such as LCD—that can be
powered by even a 100nF capacitor [29], UV sensor, and NFC transceiver [60].

SweepCache: Intermittence-Aware Cache on the Cheap MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

adp
cm

d

adp
cm

e

g721d

g721e

gsm
d

gsm
e

jp
egd

jp
ege

m
p

eg2d

m
p

eg2e

p
egw

itd

p
egw

ite

sha

susans

susane

susa

geom
ean

dijkstra

basicm
ath

ff
t

iff
t

typ
eset

blow
fishd

blow
fishe

patricia

rijndaeld

rijndaele

geom
ean

geo(all)

0 0

5 5

10 10

15 15

20 20

S
p

ee
du

p

Mediabench Mibench

21.9

ReplayCache NVSRAM SweepCache with NVM Search SweepCache with Empty-Bit Search (default)

Figure 5: Speedups over NVP without power failure

Table 1: Simulation Configuration

NVP ReplayCache NVSRAM SweepCache

𝑉𝑚𝑎𝑥 /𝑉𝑚𝑖𝑛 3.5/2.8 3.5/2.8 3.5/2.8 3.5/2.81
Backup/Restore 2.9/3.2 2.9/3.2 3.2/3.4 No/3.3

Cache size N/A 4KB 4KB 4KB
capacitor size 470nF 470nF 470nF 470nF
NVM size 16MB 16MB 16MB 16MB
NVM tech ReRAM ReRAM ReRAM ReRAM

Write/Read (latency) 120ns/20ns 120ns/20ns 120ns/20ns 120ns/20ns
Propagation delay2 1.5/10.3us 1.5/10.3us 1.5/10.3us No/1.1us

6.1 Performance without Power Outage
To analyze the performance of SweepCache, we first evaluate it
without a power outage. Figure 5 shows such outage-free perfor-
mance results. On average, NVM search and Empty-Bit search
achieve 8.80x and 8.91x speedups, respectively, while ReplayCache
exhibits a speedup of 5.10x. We find that the ReplayCache’s speedup
over the NVP is lower than what the original paper reports. That
is because we compile all the libraries for both SweepCache and
ReplayCache in addition to the application code, which would oth-
erwise lead to similar speedups. NVSRAM performs the best with a
speedup of 11.53x. There is a two-fold reason for the performance
gap between the NVSRAM and SweepCache: (1) NVSRAM has
fewer instructions since it does not generate checkpoint stores; and
(2) the persistence latency of SweepCache may not be fully hidden
by its region-level parallelism as shown in Section 6.3.

For most of the applications, SweepCache performs better than
ReplayCache. On average, NVM Search and Empty-Bit Search
achieve speedups of 1.73x and 1.75x over the ReplayCache, respec-
tively. The performance gain is mainly because of: (1) the instruc-
tions generated by SweepCache are fewer than the ReplayCache
(Section 6.5). Since ReplayCache’s compiler has to generate store-
fence instructions and clwb instructions for every store to guarantee
persistence while SweepCache only generates checkpoint stores
for live-out registers; (2) SweepCache has a high parallelism effi-
ciency, as demonstrated in Section 6.3, which can overlap most of
the persistence latency; (3) low latency paid for searching persist
1Owing to our simpler logic as described in Section 2.2, SweepCache actually can
afford a lower𝑉𝑚𝑖𝑛 as prior work [16] uses 1.8v𝑉𝑚𝑖𝑛 ; according to our evaluation,
SweepCache can obtain extra 10% ∼ 15% performance gain with 1.8v 𝑉𝑚𝑖𝑛 . While
using the same𝑉𝑚𝑖𝑛 (i.e., 2.8) of JIT-checkpoint designs serves as the lower-bound
performance of SweepCache, it still outperforms them significantly.
2Propagation delay: backup/restore voltage detection delay

buffers since the cache miss rate is low and the average number of
filled entries in the persist buffer is very small (0.00012 per region).

We notice that there are two exceptions, i.e., rijndaeldec and
rijndaelenc, where SweepCache is not better than the ReplayCache.
These two programs are small while SweepCache generates around
2xmore regions than the ReplayCache. For each region, SweepCache
needs to complete the two-phase persistence. Most of the time, the
persistence latency can be hidden by SweepCache’s region-level
parallelism, but the non-overlapped part still plays a non-trivial
role in such small programs’ execution time.

ComparedwithNVMSearch, Empty-Bit Search obtains a speedup
of 1.18%. As mentioned before, the cache miss rate is very low lead-
ing to only an average of 0.00012 per-region access to the persist
buffers. Thus, even though the Empty-Bit Search can bypass over
99% buffer search, based on the rare accesses to the persist buffers,
the performance gain is limited.

6.2 Performance with Power Outages
Figure 6 and Figure 7 show the performance results in power out-
age cases with RFHome and RFOffice power traces. For RFHome
trace, NVM Search and Empty-Bit Search achieve average speedups
of 14.60x and 14.86x while ReplayCache and NVSRAM exhibit
speedups of 4.26x and 7.37x. Compared with ReplayCache, NVM
Search and Empty-Bit Search attain average speedups of 3.43x and
3.49x, respectively. In contrast to NVM search, Empty-Bit obtains a
speedup of 1.75% on average. For RFOffice trace, NVM search and
Empty-Bit achieve average speedups of 14.31x and 14.60x while
ReplayCache and NVSRAM do speedups of 4.20x and 7.32x. Com-
pared with ReplayCache, NVM Search and Empty-Bit Search deliver
average speedups of 3.41x and 3.47x, respectively, while Empty-Bit
Search yields a speedup of 1.96% over the NVM Search.

For the power outage cases, it is impressive that SweepCache
achieves much better performance than JIT-checkpoint designs, i.e.,
ReplayCache and NVSRAM, which highlights the huge benefits of
our JIT-checkpoint-free property. Compared with JIT-checkpoint
designs, SweepCache maintains higher energy efficiency as shown
in Section 6.6. That is because SweepCache does not need to pay any
hard-won energy for the JIT-backup or other necessary logic such as
the NVFF, backup/restore controller, etc. Therefore, SweepCache
allows a larger portion of harvested energy to be used for com-
putation. In this way, SweepCache experiences less power failure

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yuchen Zhou, Jianping Zeng, Jungi Jeong*, Jongouk Choi, and Changhee Jung

adp
cm

dec

adp
cm

enc

g721dec

g721enc

gsm
dec

gsm
enc

jp
egdec

jp
egenc

m
p

eg2dec

m
p

eg2enc

p
egw

itdec

p
egw

itenc

sha

susans

susane

susanc

geom
ean

dijkstra

basicm
ath

ff
t

iff
t

typ
eset

blow
fishdec

blow
fishenc

patricia

rijndaeldec

rijndaelenc

geom
ean

geom
(all)

0 0
5 5

10 10
15 15
20 20
25 25
30 30

S
p

ee
du

p

Mediabench Mibench

ReplayCache NVSRAM SweepCache with NVM Search SweepCache with Empty-Bit Search (default)

Figure 6: Speedups over NVP for RFHome trace

adp
cm

dec

adp
cm

enc

g721dec

g721enc

gsm
dec

gsm
enc

jp
egdec

jp
egenc

m
p

eg2dec

m
p

eg2enc

p
egw

itdec

p
egw

itenc

sha

susans

susane

susanc

geom
ean

dijkstra

basicm
ath

ff
t

iff
t

typ
eset

blow
fishdec

blow
fishenc

patricia

rijndaeldec

rijndaelenc

geom
ean

geom
(all)

0 0
5 5

10 10
15 15
20 20
25 25
30 30

S
p

ee
du

p

Mediabench Mibench

ReplayCache NVSRAM SweepCache with NVM Search SweepCache with Empty-Bit Search (default)

Figure 7: Speedups over NVP for RFOffice trace

(Table 2) which saves a significant amount of charging time to re-
boot the system. Moreover, SweepCache’s region-level parallelism
greatly reduces the persistence delay while JIT-checkpoint designs
cannot. Besides, the low-cost design of SweepCache also makes
it possible to have much less propagation delay leading to faster
restoration. In addition to the above reasons, the three others men-
tioned in Section 6.1 still contribute to SweepCache’s significant
speedup over ReplayCache for these RFOffice and RFHome traces.

In particular, the speedup of Empty-Bit Search over NVM Search
under the power traces is slightly higher than that under the power-
outage-free case. That is because the higher cache miss rates caused
by frequent outages lead to more accesses for the persist buffer,
which highlights the role of empty-bit. Taking into account the su-
perior performance of Empty-Bit Search, we choose the Empty-Bit
as the default design of SweepCache for the following evaluation.

6.3 Region-Level Parallelism Efficiency
SweepCache exploits region-level parallelism to hide the persis-
tence latency. This is one of the reasons for its outstanding perfor-
mance. Thus, we evaluate the parallelism efficiency of SweepCache
in the power-outage-free/power-outage cases. We use the following
formula to calculate region-level parallelism efficiency.

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚𝑒 𝑓 𝑓 % = ((𝑇𝑝 −𝑇𝑤𝑎𝑖𝑡)/(𝑇𝑝)) ∗ 100 (1)

𝑇𝑝 is the Persistence Latency (without parallelism) and 𝑇𝑤𝑎𝑖𝑡 is the
actual waiting time. Higher efficiency means more persistence la-
tency can be hidden. Overall, we can achieve an average parallelism
efficiency of 91.70% for power-outage-free scenarios and 91.95% for
power-outage cases.

6.4 Sensitivity Study
Cache size: Figure 8 shows the speedups of SweepCache and its
competing schemes across different cache sizes from 512B to 16KB
with the RFOffice power trace. The performance is basically in
proportion to the cache size. Compared with the NVP, the greater
the cache size is, the higher speedup SweepCache can achieve.

512B 1kB 2kB 4kB 8kB 16kB0 0

5 5

10 10

15 15

S
p

ee
du

p

15.5 16.1
ReplayCache NVSRAM SweepCache

Figure 8: Speedups over NVP across different cache sizes

Capacitor size: We also explore the impact of the capacitor
size on the performance. Figure 9 shows two kinds of speedups
with different baselines for RFOffice power trace: (1) bars represent
speedups over NVP varying its capacitor size from 100nF to 1mF as
with other schemes; (2) the line shows another speedup over NVP
whose capacitor size is fixed to 100nF and how they vary as the
capacitor of other schemes gets bigger.

In addition, we show the number of average power outages
across different capacitor sizes in Table 2 without considering the
initial power-off state. Overall, increasing the capacitor size leads
to better performance. However, performance gains become lim-
ited once the capacitor size reaches 10uF, as all designs experience
fewer power outages with a capacitor size of 10uF or greater. Both

SweepCache: Intermittence-Aware Cache on the Cheap MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

100nF 470nF 1uF 10uF 100uF 1mF0
5

10
15
20
25

Re
la

tiv
e

Sp
ee

du
p ReplayCache NVSRAM SweepCache

5
10
15
20
25
30

Ab
so

lu
te

 S
pe

ed
up

Figure 9: Speedups over NVP across different capacitors with
and without fixing the size of NVP’s capacitor

Table 2: The Number of Average Power Outages

Capacitor size NVP ReplayCache NVSRAM SweepCache

100nF 458.26 151.19 77.65 34.11
470nF 144.65 38.77 20.23 14.42
1uF 50.85 18.31 9.50 6.23
10uF 7.23 1.46 0.62 0.35
100uF 0.46 0.04 0.00 0.00
1mF 0.00 0.00 0.00 0.00

NVSRAM and SweepCache exhibit no power failure when the ca-
pacitor size comes to 100uF, but NVSRAM is only slightly better
than SweepCache while NVSRAM clearly outperforms ours in Fig-
ure 5. That is because NVSRAM must pay a longer propagation
delay than ours when transitioning from the initial power-off state
to the power-on state.

Our evaluation yields three key insights: Firstly, for a given
capacitor size, SweepCache always experiences fewer power out-
ages than JIT-checkpoint designs due to its superior energy effi-
ciency. Secondly, given a certain capacitor size with power failure,
SweepCache consistently outperforms JIT-checkpoint designs. Fi-
nally, a larger capacitor does not necessarily translate to better
performance. For example, a 1uF SweepCache can deliver compa-
rable performance to a 10uF NVSRAM, while the latter incurs 1.43x
area costs with only marginal performance improvements.

Power Traces: Figure 10 shows the performance with different
power traces. In general, JIT-checkpoint designs exhibit higher
speedups over NVP when operating with more stable power traces
such as solar and thermal, as opposed to RF traces. Conversely,
SweepCache tends to demonstrate higher speedups when deal-
ing with RF traces. That is because JIT-checkpoint designs gener-
ate fewer checkpoints when exposed to more stable power traces,
whereas SweepCache conducts checkpoints at each region no mat-
ter the power failure frequency. But overall, SweepCache still de-
livers the best performance among all the different traces owing to
its higher energy efficiency.

RFOffice RFHome solar thermal0 0
2 2
4 4
6 6
8 8

10 10

S
p

ee
du

p

14.6 14.9 13.6 12.7
ReplayCache NVSRAM SweepCache

Figure 10: Speedups over NVP across different power traces

Propagation delay: We also analyze the impact of propagation
delay and conduct tests in two distinct settings: (1) set our delay the
same as JIT-checkpoint designs (set SweepCache’s 𝑇𝑝𝑙ℎ to 10.3us);
(2) set the delay of JIT-checkpoint designs to the shortest shown in

100nF 470nF 1uF 10uF 100uF 1mF0
2
4
6
8

10

Re
la

tiv
e

Sp
ee

du
p ReplayCache NVSRAM SweepCache

5
10
15
20
25
30

Ab
so

lu
te

 S
pe

ed
up

(a) Speedups over NVP across different capacitors when SweepCache’s propa-
gation delay is set the same as that of JIT-checkpoint designs

100nF 470nF 1uF 10uF 100uF 1mF0
2
4
6
8

10
12
14

Re
la

tiv
e

Sp
ee

du
p ReplayCache NVSRAM SweepCache

5.07.510.012.515.017.520.022.5

Ab
so

lu
te

 S
pe

ed
up

(b) Speedups over NVP across different capacitors when JIT-checkpoint de-
signs’s propagation delay is significantly reduced

Figure 11: Normalized speedup compared to NVP with dif-
ferent propagation delay settings.

0

20

40

60

80

100

0 20 40 60 80 100

C
um

. d
is

tr
ib

ut
io

n
(%

)

Region size (#insts)

(a) Region size (Each color indicates a different benchmark).

0

20

40

60

80

100

0 5 10 15 20 25 30

C
um

. d
is

tr
ib

ut
io

n
(%

)

Store count per region

(b) Number of stores per region

Figure 12: Analysis on region size and store count per region

the paper (set JIT-checkpoint designs’ 𝑇𝑝𝑙ℎ to 3.0us and their 𝑇𝑝ℎ𝑙
to 0.5us) [87]. Figure 11 shows the results. We find that propaga-
tion delay plays a non-trivial role in the execution time since it is
related to the speed of backup and restoration. Whether extending
the delay in SweepCache (i.e., setting 1) or reducing the delay in
JIT-checkpoint designs (i.e., setting 2), both settings result in an
earlier occurrence of the performance turning point—when NVS-
RAM outperforms SweepCache—compared to our default settings.
This is because these two settings either slow down our restoration
or expedite the backup and restoration of JIT-checkpoint designs.
However, it is hard to shrink JIT-checkpoint designs’ delay to so
short since it needs huge power consumption [87] and we believe
SweepCache’s propagation delay can also be shrunk much shorter
with the same power consumption.

Store threshold: Recall that the threshold is the maximum num-
ber of stores in a region, which does not mean that each region
should have as many stores as the threshold. We evaluated the av-
erage store counts of regions at run time with different thresholds,

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yuchen Zhou, Jianping Zeng, Jungi Jeong*, Jongouk Choi, and Changhee Jung

such as 32, 64, 128, and 256. The resulting counts are relatively
small showing insignificant differences across the thresholds. This
phenomenon results from the initial region boundaries inserted
at the entry and exit points of each function call and at each loop
header in that they cannot be optimized to extend the region size
(Section 4.1). For example, region combining cannot merge such
callsite boundaries while loop unrolling is not feasible for those
whose iteration counts are not known at compile time. Nonetheless,
SweepCache can address the problems by leveraging the techniques
mentioned in Section 5, i.e., aggressive function inlining [70] and
speculative loop unrolling [35]. Figure 12 shows CDF results of
(1) region size and (2) store count per region for all benchmarks
tested with the default threshold, i.e., 64; the average store number
is 3.92 (while the average region size is 19.47) which to some extent
accounts for why the persist buffers are empty most of the time.

6.5 Instruction Counts
Overall, compared with SweepCache, ReplayCache generates 1.64x
as many instructions, which mainly comes from extra clwb instruc-
tions and store fence instructions. This ratio is much greater than
only compiling the programs, which is only 1.03x. Compared with
NVSRAM, SweepCache generates 15.04% more instructions.

6.6 Energy Consumption
To figure out the energy efficiency of SweepCache, we evaluate
the total energy consumption under the default setting by using
the power model provided by NVPSim [23] with RFOffice trace.
Compared with NVP, the normalized total energy consumption
for ReplayCache, NVSRAM, and SweepCache are 20.86%, 12.37%,
and 10.21%, respectively. Figure 13 also shows their backup/restore
energy consumption breakdowns—normalized to NVP’s—which
are 23.74%, 15.42%, and 0.28%, respectively. SweepCache turns out
to be the most energy-effective.

ReplayCache NVSRAM SweepCache0 0
5 5

10 10
15 15
20 20
25 25
30 30

E
ne

rg
y

B
re

ak
do

w
n

(%
)

backup energy restore energy

Figure 13: Breakdown of backup and restore energy consump-
tions normalized to those of NVP

6.7 SweepCache vs. NvMR
This section compares SweepCache with NvMR, the state-of-the-
art work that performs memory renaming to eliminate write-after-
read (WAR) dependences [4], i.e., the reason for idempotence viola-
tions [26]. Once they are detected, NvMR attempts to rename their
memory location to be written. If this is not possible due to struc-
ture hazards in the architectural components of NvMR, it triggers a
backup to persist the registers, dirty cachelines, and other volatile
states necessary for the memory renaming. Also, NvMR takes ad-
vantage of JIT checkpointing techniques that in their original form,
do not start a power-interrupted program until the restoration volt-
age (𝑉𝑟𝑒𝑠𝑡𝑜𝑟𝑒 , see Section 2.2) is reached, which could otherwise

encounterWAR dependences. The beauty of NvMR is that it enables
the program to keep running even after the JIT backup, without
waiting for the capacitor to be charged enough to offer 𝑉𝑟𝑒𝑠𝑡𝑜𝑟𝑒—
because the memory renaming can resolve the WAR dependences.
In particular, if power failure happens while the backup voltage is
not secured, NvMR must roll back to the latest JIT backup point.

470nF 1uF 2uF 5uF 10uF 100uF 1mF0
2
4
6
8

10
12

Sp
ee

du
p

14.6 NvMR SweepCache

20
0
20
40
60
80
100

En
er

gy
 S

av
in

g
(%

)

Figure 14: Performance gain and energy saving over NvMR.

We implemented NvMR with its parameters kept the same as
SweepCache’smemory hierarchy shown in Table 1. Figure 14 shows
the results of SweepCache and NvMR (a bar corresponds to their
speedup over NVPwhile a curve to SweepCache’s energy reduction
compared to NvMR) when the RFOffice trace is used. SweepCache
is significantly faster than NvMR for all capacitor settings but
1mF that is a lot bigger than our target capacitor size, i.e., a few
hundred nF (Section 5). Overall, across 7 different capacitor sizes,
SweepCache achieves an average of 1.71x speedup (up to 6.04x
when the capacitor size is 470nF) over NvMR mainly due to its su-
perior energy efficiency—resulting from the JIT-checkpoint-free na-
ture and the lightweight hardware design. On average, SweepCache
saves 19.94% of the energy consumed by NvMR (up to 82.3% with
the 470nF capacitor).

6.8 Cache Miss Rate and Write Amplification
Compared to NVSRAM, SweepCache may encounter more cold
misses since it does not save any cachelines before power failure.
To evaluate the cache miss rate, we consider NVSRAM, NVSRAM-E
(backs up the entire cache), SweepCache, and ReplayCache. The
results are shown in Figure 15. Overall, the cache miss rate for all
designs (excluding NVSRAM-E) decreases as power traces become
more stable. We notice that ReplayCache has a higher miss rate
than SweepCache, even though both designs do not save cachelines
before a power outage. This is because ReplayCache experiences
more power failure with the same capacitor size. Compared to
NVSRAM, SweepCache incurs only a 7.50% increase in average
cache miss rates as it experiences fewer power outages due to its
higher energy efficiency.

RFOffice RFHome solar thermal2.0 2.0
2.5 2.5
3.0 3.0
3.5 3.5
4.0 4.0
4.5 4.5
5.0 5.0

C
ac

he
M

is
s

R
at

e
(%

) 5.2
ReplayCache NVSRAM NVSRAM-E SweepCache

Figure 15: Cache miss rate for different traces.

Furthermore, SweepCache suffers from write amplification due
to the presence of the persist buffers, resulting in twice NVMwrites
for every writeback. The situation worsens for ReplayCache, which

SweepCache: Intermittence-Aware Cache on the Cheap MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

generates an NVM write (clwb) for every store. However, NVSRAM
also results in additional NVMwrites for backing up the registers to
NVFF and dirty cachelines to their NVM counterpart. Therefore, we
count the number of NVM writes for the four designs mentioned
above, as shown in Figure 16. The NVM writes of SweepCache
mainly come from the writebacks at each region end, while the
NVM writes of ReplayCache mainly come from its clwb for every
store. Unlike NVSRAM and NVSRAM-E, whose NVM writes pri-
marily stem from the backup preceding the power failure and are
largely impacted by the power outage frequency, resulting in fewer
NVM writes in more stable power traces, i.e., solar and thermal, the
NVM writes of SweepCache and ReplayCache mainly come from
regular persistence operations which does not show a significant
difference among various power traces. On average, SweepCache
incurs 4.62x as many NVMwrites compared to NVSRAM. However,
NVMwrites only consume about 0.01% and 0.23% of the total energy
for NVSRAM and SweepCache, respectively. Therefore, thanks to
SweepCache’s superior energy efficiency and its substantial region-
level parallelism, which effectively conceals the majority of NVM
write latency, SweepCache still delivers better performance.

RFOffice RFHome solar thermal0 0
1 1
2 2
3 3
4 4
5 5

N
or

m
al

iz
ed

N
V

M
W

ri
te 9.9 10.0 10.0 10.0

ReplayCache NVSRAM NVSRAM-E SweepCache

Figure 16: Analysis on the number of NVMwrites normalized
to those of NVSRAM when RFOffice trace is used

6.9 Hardware Costs
The hardware costs of SweepCache are not significant owing to
its intelligent compiler-architecture co-design. Apart from the two
persist buffers, SweepCache only needs a total of 134 bits, i.e., two
empty-bits (one of each persist buffer), four phaseComplete bits,
and two 64-bit SRAM tables, for a 4kB cache. This is rather minimal
compared to the hardware costs of prior JIT-checkpoint designs.

7 RELATEDWORK
There is a large body of prior research on energy harvesting sys-
tems. Apart from the NVP architecture, QuickRecall [31] is another
choice to deal with frequent power failure in a crash-consistent
way. Although QuickRecall obviates the need for nonvolatile flip-
flops by saving registers to NVM before impending power failure,
it still relies on JIT checkpointing to ensure the failure atomicity of
the register saving. Since QuickRecall should save the registers by
executing a series of store instructions without special hardware
support, the resulting performance overhead is quite significant
compared to those of NVP approaches.

Unlike QuickRecall, some prior work attempts to equip energy
harvesting systems with a data cache. NVCache explores the use of
NVM as the material of persistent cache implementation [1, 36, 67,
68, 76, 92, 95]. However, NVCache causes both longer latency and
more energy consumption than a traditional SRAM cache. Thus,
other researchers delve into the integration of SRAMon top of NVM,

i.e., leveraging the NVM as JIT-checkpoint storage to save SRAM
cache contents and consult it across power failure [12, 25, 43, 48, 49,
65, 66, 69, 83, 86, 94, 96]. To enhance the performance of the NVM
backup and the restoration, the researchers propose various NVM
technologies. For example, STT-RAM provides faster access time
and higher energy efficiency than alternative NVM technologies
at the cost of more sensitive process, voltage, and temperature
(PVT) variations [20], causing more errors with a higher possibility.
Furthermore, the speeds of the NVM backup and the restoration are
lacking and remain a daunting challenge, as no NVM technology
currently affords to match the performance of SRAM [16, 41, 97].

One might ask if such a cache-enabled energy harvesting sys-
tem can benefit from existing crash consistency mechanisms for
high-performance computing systems backed with deep cache hi-
erarchy and persistent memory. For instance, prior software-based
recovery schemes based on undo/redo logging or idempotent pro-
cessing [9, 32, 33, 35, 40, 50, 51, 53–56, 90, 99, 100] may seem like
a potential avenue. However, they tend to incur significant per-
formance degradation, e.g., iDO [51] for failure-atomic sections (
FASEs) and Mnemosyne [90] for transactions result in up to 2-3x
slowdown because of so-called persist barriers that serialize the
out-of-order pipeline execution significantly.

Taking that into consideration, some other recovery schemes
come up with hardware-based logging [19, 22, 34, 38, 73, 84] to
lower the performance overhead. However, they still suffer signif-
icant pipeline stalls waiting at the end of each atomic region e.g.,
a transaction or a FASE, to ensure the persistence of the stores in
the region. Furthermore, neither the software nor the hardware
logging is devised for whole system persistence [41, 72, 98] that is
essential for energy harvesting systems. That is, these prior recov-
ery schemes offer crash consistency only to a region of the code in
transactions or failure-atomic sections, leaving other code outside
the region inconsistent across power failure. Consequently, unlike
SweepCache, the prior schemes are not appropriate for an energy
harvesting system, i.e., they cannot enable it to take advantage of a
data cache in a performant and low-cost manner.

8 CONCLUSION
This paper presents SweepCache, a novel compiler and architec-
ture co-design approach that enables energy harvesting systems
to exploit a volatile cache in a performant and lightweight way.
To ensure correct power failure recovery, the compiler generates
recoverable regions while the architecture runs them in a failure-
atomic way. Thanks to SweepCache’s region-level persistence that
cleans up the cache across the region boundary, energy harvest-
ing systems do not have to rely on expensive just-in-time (JIT)
checkpointing, and thus they can fully utilize harvested energy
for computation. As a result, SweepCache achieves 3.47x and 3.49x
speedups over the state-of-art work for two representative energy
harvesting traces, respectively.

ACKNOWLEDGMENTS
We thank anonymous reviewers and our shepherd for their valuable
comments. At Purdue, this work was supported by NSF grants
2001124 (CAREER), 2153749, and 2314681. At UCF, this work was
supported by NSF grant 2314680.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yuchen Zhou, Jianping Zeng, Jungi Jeong*, Jongouk Choi, and Changhee Jung

REFERENCES
[1] Sukarn Agarwal and Hemangee K Kapoor. 2019. Improving the lifetime of non-

volatile cache by write restriction. IEEE Trans. Comput. 68, 9 (2019), 1297–1312.
[2] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. 2007. Compilers:

principles, techniques, & tools. Pearson Education India.
[3] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi,

Davide Brunelli, and Luca Benini. 2014. Hibernus: Sustaining computation
during intermittent supply for energy-harvesting systems. IEEE Embedded
Systems Letters 7, 1 (2014), 15–18.

[4] Abhishek Bhattacharyya, Abhijith Somashekhar, and Joshua San Miguel. 2022.
NvMR: non-volatile memory renaming for intermittent computing. In Proceed-
ings of the 49th Annual International Symposium on Computer Architecture. 1–13.

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[6] Jo Bito, Ryan Bahr, Jimmy G Hester, Syed Abdullah Nauroze, Apostolos Geor-
giadis, and Manos M Tentzeris. 2017. A novel solar and electromagnetic energy
harvesting system with a 3-D printed package for energy efficient Internet-of-
Things wireless sensors. IEEE Transactions on Microwave Theory and Techniques
65, 5 (2017), 1831–1842.

[7] Paul Cahill, Rosemary O’Keeffe, Nathan Jackson, Alan Mathewson, and Vikram
Pakrashi. 2014. Structural health monitoring of reinforced concrete beam using
piezoelectric energy harvesting system. In EWSHM-7th European workshop on
structural health monitoring.

[8] Shihua Cao and Jianqing Li. 2017. A survey on ambient energy sources and
harvesting methods for structural health monitoring applications. Advances in
Mechanical Engineering 9, 4 (2017), 1687814017696210.

[9] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. 2014. Atlas:
Leveraging locks for non-volatile memory consistency. ACM SIGPLAN Notices
49, 10 (2014), 433–452.

[10] Qijia Cheng, Zhuoteng Peng, Jie Lin, Shanshan Li, and Fei Wang. 2015. Energy
harvesting from human motion for wearable devices. In 10th IEEE International
Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 409–412.

[11] Pi-Feng Chiu, Meng-Fan Chang, Shyh-Shyuan Sheu, Ku-Feng Lin, Pei-Chia
Chiang, Che-Wei Wu, Wen-Pin Lin, Chih-He Lin, Ching-Chih Hsu, Frederick T
Chen, et al. 2010. A low store energy, low VDDmin, nonvolatile 8T2R SRAM
with 3D stacked RRAM devices for low power mobile applications. In 2010
Symposium on VLSI Circuits. IEEE, 229–230.

[12] Pi-Feng Chiu,Meng-Fan Chang, Che-WeiWu, Ching-Hao Chuang, Shyh-Shyuan
Sheu, Yu-Sheng Chen, andMing-Jinn Tsai. 2012. Low store energy, low VDDmin,
8T2R nonvolatile latch and SRAMwith vertical-stacked resistive memory (mem-
ristor) devices for low power mobile applications. IEEE Journal of Solid-State
Circuits 47, 6 (2012), 1483–1496.

[13] Jongouk Choi, Hyunwoo Joe, and Changhee Jung. 2022. CapOS: Capacitor Error
Resilience for Energy Harvesting Systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41, 11 (2022), 4539–4550.

[14] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung. 2019. Achiev-
ing Stagnation-Free Intermittent Computation with Boundary-Free Adaptive
Execution. In 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). 331–344. https://doi.org/10.1109/RTAS.2019.00035

[15] Jongouk Choi, Larry Kittinger, Qingrui Liu, and Changhee Jung. 2022. Compiler-
directed high-performance intermittent computation with power failure immu-
nity. In 2022 IEEE 28th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 40–54.

[16] Jongouk Choi, Qingrui Liu, and Changhee Jung. 2019. CoSpec: Compiler di-
rected speculative intermittent computation. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 399–412.

[17] Jongouk Choi, Jianping Zeng, Dongyoon Lee, Changwoo Min, and Changhee
Jung. 2023. Write-Light Cache for Energy Harvesting Systems. In Proceedings
of the 50th Annual International Symposium on Computer Architecture. 1–13.

[18] Yung-Wey Chong, Widad Ismail, Kwangman Ko, and Chen-Yi Lee. 2019. Energy
harvesting for wearable devices: A review. IEEE Sensors Journal 19, 20 (2019),
9047–9062.

[19] Kshitij Doshi, Ellis Giles, and Peter Varman. 2016. Atomic persistence for SCM
with a non-intrusive backend controller. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 77–89.

[20] Moritz Fieback, Christopher Münch, Anteneh Gebregiorgis, Guilherme Cardoso
Medeiros, Mottaqiallah Taouil, Said Hamdioui, and Mehdi Tahoori. 2022. PVT
Analysis for RRAM and STT-MRAM-based Logic Computation-in-Memory. In
2022 IEEE European Test Symposium (ETS). IEEE, 1–6.

[21] Tzeno Galchev, James McCullagh, Rebecca L Peterson, and Khalil Najafi. 2010.
A vibration harvesting system for bridge health monitoring applications. Proc.
PowerMEMS 1 (2010), 179–182.

[22] Ellis Giles, Kshitij Doshi, and Peter Varman. 2013. Bridging the programming
gap between persistent and volatile memory using WrAP. In Proceedings of the
ACM International Conference on Computing Frontiers. 1–10.

[23] Yizi Gu, Yongpan Liu, YiqunWang, Hehe Li, and Huazhong Yang. 2016. NVPsim:
A simulator for architecture explorations of nonvolatile processors. In 2016 21st
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 147–152.

[24] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. 2001. MiBench: A free, commercially repre-
sentative embedded benchmark suite. In Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No. 01EX538).
IEEE, 3–14.

[25] Christian E Herdt and CA Paz de Araujo. 1992. Analysis, measurement, and
simulation of dynamic write inhibit in an nvSRAM cell. IEEE transactions on
electron devices 39, 5 (1992), 1191–1196.

[26] MatthewHicks. 2017. Clank: Architectural support for intermittent computation.
ACM SIGARCH Computer Architecture News 45, 2 (2017), 228–240.

[27] Shao-Yu Huang, Jianping Zeng, Xuanliang Deng, Sen Wang, Ashrarul Haq Sifat,
Burhanuddin Bharmal, Jiabin Huang, RyanWilliams, Haibo Zeng, and Changhee
Jung. 2023. RTailor: Parameterizing Soft Error Resilience for Mixed-Criticality
Real-Time Systems. In 2023 IEEE Real-Time Systems Symposium (RTSS). IEEE.

[28] Texas Instruments. 2015. LMV7275-Q1 Automotive Single 1.8-V Low Power
Comparator With Rail-to-Rail Input. https://www.ti.com/lit/ds/symlink/
lmv7291.pdf. Accessed: 2023-02-16.

[29] Texas Instruments. 2015. MSP low-power microcontroller. https:
//e2e.ti.com/support/microcontrollers/msp-low-power-microcontrollers-
group/msp430/f/msp-low-power-microcontroller-forum/454244/what-size-
capacitor-is-needed-across-the-charge-pump-lcdcapx-pins-for-the-fr4133-
lcd_e-module. Accessed: 2023-03-16.

[30] Texas Instruments. 2016. MSP430FR5994 LaunchPad Development Kit. https:
//www.ti.com/lit/ug/slau678c/slau678c.pdf. Accessed: 2023-02-16.

[31] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. Quickrecall:
A low overhead hw/sw approach for enabling computations across power cycles
in transiently powered computers. In 2014 27th International Conference on VLSI
Design and 2014 13th International Conference on Embedded Systems. IEEE, 330–
335.

[32] Jungi Jeong, Jaewan Hong, Seungryoul Maeng, Changhee Jung, and Youngjin
Kwon. 2020. Unbounded hardware transactional memory for a hybrid
DRAM/NVM memory system. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 525–538.

[33] Jungi Jeong and Changhee Jung. 2021. PMEM-spec: persistent memory specu-
lation (strict persistency can trump relaxed persistency). In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 517–529.

[34] Jungi Jeong, Chang Hyun Park, Jaehyuk Huh, and Seungryoul Maeng. 2018.
Efficient hardware-assisted logging with asynchronous and direct-update for
persistent memory. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 520–532.

[35] Jungi Jeong, Jianping Zeng, and Changhee Jung. 2022. Capri: Compiler and
architecture support for whole-system persistence. In Proceedings of the 31st In-
ternational Symposium on High-Performance Parallel and Distributed Computing.
71–83.

[36] Mohammad Reza Jokar, Mohammad Arjomand, and Hamid Sarbazi-Azad. 2015.
Sequoia: A high-endurance NVM-based cache architecture. IEEE transactions
on very large scale Integration (VLSI) systems 24, 3 (2015), 954–967.

[37] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015. Efficient
persist barriers for multicores. In Proceedings of the 48th International Symposium
on Microarchitecture. 660–671.

[38] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017. Atom:
Atomic durability in non-volatile memory through hardware logging. In 2017
IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 361–372.

[39] Pouya Kamalinejad, Chinmaya Mahapatra, Zhengguo Sheng, Shahriar Mirab-
basi, Victor CM Leung, and Yong Liang Guan. 2015. Wireless energy harvesting
for the Internet of Things. IEEE Communications Magazine 53, 6 (2015), 102–108.

[40] Hongjune Kim, Jianping Zeng, Qingrui Liu, Mohammad Abdel-Majeed, Jaejin
Lee, and Changhee Jung. 2020. Compiler-directed soft error resilience for
lightweight GPU register file protection. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation. 989–1004.

[41] Aasheesh Kolli. 2017. Architecting persistent memory systems. Ph.D. Dissertation.
[42] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for

lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[43] Albert Lee, Meng-Fan Chang, Chien-Chen Lin, Chien-Fu Chen, Mon-Shu Ho,
Chia-Chen Kuo, Pei-Ling Tseng, Shyh-Shyuan Sheu, and Tzu-Kun Ku. 2015.
RRAM-based 7T1R nonvolatile SRAM with 2x reduction in store energy and
94x reduction in restore energy for frequent-off instant-on applications. In 2015
Symposium on VLSI Circuits (VLSI Circuits). IEEE, C76–C77.

[44] Albert Lee, Chieh-Pu Lo, Chien-Chen Lin, Wei-Hao Chen, Kuo-Hsiang Hsu,
Zhibo Wang, Fang Su, Zhe Yuan, Qi Wei, Ya-Chin King, et al. 2017. A ReRAM-
based nonvolatile flip-flop with self-write-termination scheme for frequent-off
fast-wake-up nonvolatile processors. IEEE Journal of Solid-State Circuits 52, 8
(2017), 2194–2207.

https://doi.org/10.1109/RTAS.2019.00035
https://www.ti.com/lit/ds/symlink/lmv7291.pdf
https://www.ti.com/lit/ds/symlink/lmv7291.pdf
https://e2e.ti.com/support/microcontrollers/msp-low-power-microcontrollers-group/msp430/f/msp-low-power-microcontroller-forum/454244/what-size-capacitor-is-needed-across-the-charge-pump-lcdcapx-pins-for-the-fr4133-lcd_e-module
https://e2e.ti.com/support/microcontrollers/msp-low-power-microcontrollers-group/msp430/f/msp-low-power-microcontroller-forum/454244/what-size-capacitor-is-needed-across-the-charge-pump-lcdcapx-pins-for-the-fr4133-lcd_e-module
https://e2e.ti.com/support/microcontrollers/msp-low-power-microcontrollers-group/msp430/f/msp-low-power-microcontroller-forum/454244/what-size-capacitor-is-needed-across-the-charge-pump-lcdcapx-pins-for-the-fr4133-lcd_e-module
https://e2e.ti.com/support/microcontrollers/msp-low-power-microcontrollers-group/msp430/f/msp-low-power-microcontroller-forum/454244/what-size-capacitor-is-needed-across-the-charge-pump-lcdcapx-pins-for-the-fr4133-lcd_e-module
https://e2e.ti.com/support/microcontrollers/msp-low-power-microcontrollers-group/msp430/f/msp-low-power-microcontroller-forum/454244/what-size-capacitor-is-needed-across-the-charge-pump-lcdcapx-pins-for-the-fr4133-lcd_e-module
https://www.ti.com/lit/ug/slau678c/slau678c.pdf
https://www.ti.com/lit/ug/slau678c/slau678c.pdf

SweepCache: Intermittence-Aware Cache on the Cheap MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

[45] Chunho Lee, Miodrag Potkonjak, and William H Mangione-Smith. 1997. Media-
bench: A tool for evaluating and synthesizing multimedia and communications
systems. In Proceedings of 30th Annual International Symposium on Microarchi-
tecture. IEEE, 330–335.

[46] Vladimir Leonov. 2011. Energy harvesting for self-powered wearable devices.
In Wearable monitoring systems. Springer, 27–49.

[47] Xueqing Li, Sumitha George, Yuhua Liang, Kaisheng Ma, Kai Ni, Ahmedullah
Aziz, Sumeet Kumar Gupta, John Sampson, Meng-Fan Chang, Yongpan Liu, et al.
2018. Lowering area overheads for FeFET-based energy-efficient nonvolatile
flip-flops. IEEE Transactions on Electron Devices 65, 6 (2018), 2670–2674.

[48] Xueqing Li, Kaisheng Ma, Sumitha George, Win-San Khwa, John Sampson,
Sumeet Gupta, Yongpan Liu, Meng-Fan Chang, Suman Datta, and Vijaykrishnan
Narayanan. 2017. Design of nonvolatile SRAM with ferroelectric FETs for
energy-efficient backup and restore. IEEE Transactions on Electron Devices 64, 7
(2017), 3037–3040.

[49] Chao Liu, Jianguo Yang, Pengfei Jiang, Qiao Wang, Donglin Zhang, Tiancheng
Gong, Qingting Ding, Yuling Zhao, Qing Luo, Xiaoyong Xue, et al. 2020. A Low
Power 4T2C nvSRAMWith Dynamic Current Compensation Operation Scheme.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28, 11 (2020),
2469–2473.

[50] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, YongweiWu,Weimin
Zheng, and Jinglei Ren. 2017. DudeTM: Building durable transactions with
decoupling for persistent memory. ACM SIGPLAN Notices 52, 4 (2017), 329–343.

[51] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H Noh,
and Changhee Jung. 2018. iDO: Compiler-directed failure atomicity for non-
volatile memory. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 258–270.

[52] Qingrui Liu and Changhee Jung. 2016. Lightweight hardware support for
transparent consistency-aware checkpointing in intermittent energy-harvesting
systems. In 2016 5th Non-Volatile Memory Systems and Applications Symposium
(NVMSA). IEEE, 1–6.

[53] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2015. Clover:
Compiler directed lightweight soft error resilience. ACM Sigplan Notices 50, 5
(2015), 1–10.

[54] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-
directed lightweight checkpointing for fine-grained guaranteed soft error recov-
ery. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 228–239.

[55] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-
directed soft error detection and recovery to avoid DUE and SDC via Tail-DMR.
ACM Transactions on Embedded Computing Systems (TECS) 16, 2 (2016), 1–26.

[56] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwarit. 2016. Low-
cost soft error resilience with unified data verification and fine-grained recovery
for acoustic sensor based detection. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1–12.

[57] Yongpan Liu, Zewei Li, Hehe Li, Yiqun Wang, Xueqing Li, 3 usKaisheng Ma,
Shuangchen Li, Meng-Fan Chang, Sampson John, Yuan Xie, et al. 2015. Ambient
energy harvesting nonvolatile processors: From circuit to system. In Proceedings
of the 52nd Annual Design Automation Conference. 1–6.

[58] Yongpan Liu, Jinshan Yue, Hehe Li, Qinghang Zhao, Mengying Zhao, Chun Jason
Xue, Guangyu Sun, Meng-Fan Chang, and Huazhong Yang. 2017. Data backup
optimization for nonvolatile SRAM in energy harvesting sensor nodes. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 36, 10
(2017), 1660–1673.

[59] KaishengMa, Xueqing Li, Shuangchen Li, Yongpan Liu, John Jack Sampson, Yuan
Xie, and Vijaykrishnan Narayanan. 2015. Nonvolatile Processor Architecture
Exploration for Energy-Harvesting Applications. IEEE Micro 35, 5 (2015), 32–40.
https://doi.org/10.1109/MM.2015.88

[60] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik3 us Swaminathan, Xueqing
Li, Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan Narayanan. 2015.
Architecture exploration for ambient energy harvesting nonvolatile proces-
sors. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA). 526–537. https://doi.org/10.1109/HPCA.2015.7056060

[61] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent
Execution without Checkpoints. Proc. ACM Program. Lang. 1, OOPSLA.

[62] Kiwan Maeng and Brandon Lucia. 2018. Adaptive Dynamic Checkpointing
for Safe Efficient Intermittent Computing. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation (OSDI’18).

[63] Michele Magno and David Boyle. 2017. Wearable energy harvesting: From
body to battery. In 2017 12th International Conference on Design & Technology of
Integrated Systems In Nanoscale Era (DTIS). IEEE, 1–6.

[64] Michele Magno, Dario Kneubühler, Philipp Mayer, and Luca Benini. 2018. Micro
kinetic energy harvesting for autonomous wearable devices. In 2018 Interna-
tional symposium on power electronics, electrical drives, automation and motion
(SPEEDAM). IEEE, 105–110.

[65] Swatilekha Majumdar, Sandeep Kaur Kingra, Manan Suri, and Manish Tikyani.
2016. Hybrid CMOS-OxRAM based 4T-2R NVSRAMwith efficient programming

scheme. In 2016 16th Non-Volatile Memory Technology Symposium (NVMTS). IEEE,
1–4.

[66] Shoichi Masui, Wataru Yokozeki, Michiya Oura, Tsuzumi Ninomiya, Kenji
Mukaida, Yoshihisa Takayama, and Toshiyuki Teramoto. 2003. Design and
applications of ferroelectric nonvolatile SRAM and flip-flop with unlimited
read/program cycles and stable recall. In Proceedings of the IEEE 2003 Custom
Integrated Circuits Conference, 2003. IEEE, 403–406.

[67] Sparsh Mittal, Jeffrey S Vetter, and Dong Li. 2014. LastingNVCache: A technique
for improving the lifetime of non-volatile caches. In 2014 IEEE Computer Society
Annual Symposium on VLSI. IEEE, 534–540.

[68] Sparsh Mittal, Jeffrey S Vetter, and Dong Li. 2014. WriteSmoothing: Improving
lifetime of non-volatile caches using intra-set wear-leveling. In Proceedings of
the 24th edition of the great lakes symposium on VLSI. 139–144.

[69] Tohru Miwa, Junichi Yamada, Hiroki Koike, Hideo Toyoshima, Kazushi
Amanuma, Sota Kobayashi, Toru Tatsumi, Yukihiko Maejima, Hiromitsu Hada,
and Takemitsu Kunio. 2001. NV-SRAM: A nonvolatile SRAM with backup fer-
roelectric capacitors. IEEE Journal of Solid-State Circuits 36, 3 (2001), 522–527.

[70] Steven Muchnick. 1997. Advanced compiler design implementation. Morgan
kaufmann.

[71] Taehui Na, Kyungho Ryu, Jisu Kim, Seung H Kang, and Seong-Ook Jung. 2013.
A comparative study of STT-MTJ based non-volatile flip-flops. In 2013 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 109–112.

[72] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system persistence. In
Proceedings of the seventeenth international conference on Architectural Support
for Programming Languages and Operating Systems. 401–410.

[73] Matheus Almeida Ogleari, Ethan L Miller, and Jishen Zhao. 2018. Steal but no
force: Efficient hardware undo+ redo logging for persistent memory systems. In
2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 336–349.

[74] Santhosh Onkaraiah, Marina Reyboz, Fabien Clermidy, Jean-Michel Portal, Marc
Bocquet, Chritophe Muller, Costin Anghel, Amara Amara, et al. 2012. Bipolar
ReRAM based non-volatile flip-flops for low-power architectures. In 10th IEEE
International NEWCAS Conference. IEEE, 417–420.

[75] Gyuhae Park, Tajana Rosing, Michael D Todd, Charles R Farrar, and William
Hodgkiss. 2008. Energy harvesting for structural health monitoring sensor
networks. Journal of Infrastructure Systems 14, 1 (2008), 64–79.

[76] Sang Phill Park, Sumeet Gupta, Niladri Mojumder, Anand Raghunathan, and
Kaushik Roy. 2012. Future cache design using STT MRAMs for improved energy
efficiency: Devices, circuits and architecture. In Proceedings of the 49th Annual
Design Automation Conference. 492–497.

[77] Steven Pelley, Peter M Chen, and Thomas F Wenisch. 2014. Memory persistency.
ACM SIGARCH Computer Architecture News 42, 3 (2014), 265–276.

[78] Jean-Michel Portal, Marc Bocquet, Mathieu Moreau, Hassen Aziza, Damien
Deleruyelle, Yue Zhang, Wang Kang, Jacques-Olivier Klein, YG Zhang, Claude
Chappert, et al. 2014. An overview of non-volatile flip-flops based on emerging
memory technologies. Journal of Electronic Science and Technology 12, 2 (2014),
173–181.

[79] Shashank Priya and Daniel J Inman. 2009. Energy harvesting technologies. Vol. 21.
Springer.

[80] Emily Ruppel, Milijana Surbatovich, Harsh Desai, Kiwan Maeng, and Bran-
don Lucia. 2022. An Architectural Charge Management Interface for Energy-
Harvesting Systems. In 2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). IEEE, 318–335.

[81] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V Mamishev,
and Joshua R Smith. 2008. Design of an RFID-based battery-free programmable
sensing platform. IEEE transactions on instrumentation and measurement 57, 11
(2008), 2608–2615.

[82] Joshua San Miguel, Karthik Ganesan, Mario Badr, Chunqiu Xia, Rose Li, Hsuan
Hsiao, and Natalie Enright Jerger. 2018. The eh model: Early design space ex-
ploration of intermittent processor architectures. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 600–612.

[83] Shyh-Shyuan Sheu, Chia-Chen Kuo, Meng-Fan Chang, Pei-Ling Tseng, Lin Chih-
Sheng, Min-Chuan Wang, Chih-He Lin, Wen-Pin Lin, Tsai-Kan Chien, Sih-Han
Lee, et al. 2013. A ReRAM integrated 7T2R non-volatile SRAM for normally-
off computing application. In 2013 IEEE Asian Solid-State Circuits Conference
(A-SSCC). IEEE, 245–248.

[84] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. 2017.
Proteus: A flexible and fast software supported hardware logging approach for
nvm. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. 178–190.

[85] Jeetendra Singh and Balwinder Raj. 2019. Design and investigation of 7T2M-
NVSRAM with enhanced stability and temperature impact on store/restore
energy. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27, 6
(2019), 1322–1328.

[86] Weining Song, Yang Zhou, Mengying Zhao, Lei Ju, Chun Jason Xue, and Zhip-
ing Jia. 2018. EMC: Energy-aware morphable cache design for non-volatile
processors. IEEE Trans. Comput. 68, 4 (2018), 498–509.

https://doi.org/10.1109/MM.2015.88
https://doi.org/10.1109/HPCA.2015.7056060

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Yuchen Zhou, Jianping Zeng, Jungi Jeong*, Jongouk Choi, and Changhee Jung

[87] Fang Su, Yongpan Liu, Yiqun Wang, and Huazhong Yang. 2016. A Ferroelectric
Nonvolatile Processor with 46𝜇s System-Level Wake-up Time and 14𝜇s Sleep
Time for Energy Harvesting Applications. IEEE Transactions on Circuits and
Systems I: Regular Papers 64, 3 (2016), 596–607.

[88] P Thanigai and W Goh. 2015. Maximizing Write Speed on the MSP430 FRAM.
Online] https://www. ti. com/lit/an/slaa498b/slaa498b. pdf (2015).

[89] Joel VanDerWoude andMatthewHicks. 2016. Intermittent computationwithout
hardware support or programmer intervention. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). 17–32.

[90] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Light-
weight persistent memory. ACM SIGARCH Computer Architecture News 39, 1
(2011), 91–104.

[91] Cong Wang, Naehyuck Chang, Younghyun Kim, Sangyoung Park, Yongpan
Liu, Hyung Gyu Lee, Rong Luo, and Huazhong Yang. 2014. Storage-less and
converter-less maximum power point tracking of photovoltaic cells for a non-
volatile microprocessor. In 2014 19th Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 379–384.

[92] Jue Wang, Xiangyu Dong, Yuan Xie, and Norman P Jouppi. 2013. i 2 WAP:
Improving non-volatile cache lifetime by reducing inter-and intra-set write
variations. In 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 234–245.

[93] Yiqun Wang, Yongpan Liu, Shuangchen Li, Daming Zhang, Bo Zhao, Mei-Fang
Chiang, Yanxin Yan, Baiko Sai, and Huazhong Yang. 2012. A 3us wake-up time
nonvolatile processor based on ferroelectric flip-flops. In 2012 Proceedings of the
ESSCIRC (ESSCIRC). IEEE, 149–152.

[94] Mimi Xie, Mengying Zhao, Chen Pan, Hehe Li, Yongpan Liu, Youtao Zhang,
Chun Jason Xue, and Jingtong Hu. 2016. Checkpoint aware hybrid cache archi-
tecture for NV processor in energy harvesting powered systems. In Proceedings
of the eleventh IEEE/ACM/ifip international conference on hardware/software
codesign and system synthesis. 1–10.

[95] Wei Xu, Hongbin Sun, XiaobinWang, Yiran Chen, and Tong Zhang. 2009. Design
of last-level on-chip cache using spin-torque transfer RAM (STT RAM). IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 19, 3 (2009), 483–493.

[96] Shuuichirou Yamamoto, Yusuke Shuto, and Satoshi Sugahara. 2009. Nonvolatile
SRAM (NV-SRAM) using functional MOSFET merged with resistive switching
devices. In 2009 IEEE Custom Integrated Circuits Conference. IEEE, 531–534.

[97] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi, Dongyoon
Lee, Changwoo Min, and Changhee Jung. 2021. ReplayCache: Enabling Volatile
Cachesfor Energy Harvesting Systems. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 170–182.

[98] Jianping Zeng, Jungi Jeong, and Changhee Jung. 2023. Persistent Processor
Architecture. In MICRO-56: 56th Annual IEEE/ACM International Symposium on
Microarchitecture.

[99] Jianping Zeng, Hongjune Kim, Jaejin Lee, and Changhee Jung. 2021. Turnpike:
Lightweight Soft Error Resilience for In-Order Cores. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. 654–666.

[100] Yida Zhang and Changhee Jung. 2022. Featherweight soft error resilience for
GPUs. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 245–262.

[101] Kazi Abu Zubair andAmroAwad. 2019. Anubis: ultra-low overhead and recovery
time for secure non-volatile memories. In Proceedings of the 46th International
Symposium on Computer Architecture. 157–168.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Basics of Energy Harvesting Systems
	2.2 Enabling Caches with JIT Checkpointing

	3 SweepCache Approach
	3.1 Compiler-Assisted Register Checkpointing
	3.2 Region-Level Store Persistence
	3.3 Region-Level Parallelism
	3.4 Region-Level Failure Recovery

	4 Implementation Details
	4.1 SweepCache Compiler
	4.2 Recovery Protocol
	4.3 Write-After-Write
	4.4 Cache Misses Handling
	4.5 The Size of the Persist Buffer
	4.6 Write-Back-Instructive Table

	5 Discussion
	6 Evaluation
	6.1 Performance without Power Outage
	6.2 Performance with Power Outages
	6.3 Region-Level Parallelism Efficiency
	6.4 Sensitivity Study
	6.5 Instruction Counts
	6.6 Energy Consumption
	6.7 SweepCache vs. NvMR
	6.8 Cache Miss Rate and Write Amplification
	6.9 Hardware Costs

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

