
Intermittence-Aware Cache Compression
Gan Fang

Purdue University
West Lafayette, USA
fang301@purdue.edu

Jianping Zeng
Arizona State University

Tempe, USA
jpzeng@asu.edu

Yuchen Zhou
Purdue University

West Lafayette, USA
zhou1166@purdue.edu

Changhee Jung
Purdue University

West Lafayette, USA
chjung@purdue.edu

Abstract—Cache compressions are proven effective in im-
proving the performance of caches in conventional processors.
They compress data into a smaller size, allowing caches to
accommodate more blocks. This helps reduce cache misses and
expensive memory accesses, ultimately improving performance.
However, conventional cache compression is less effective for
energy harvesting systems (EHSs) which experience frequent
power failure, as many compressed blocks end up not being
used before their loss upon power outage. This wastes hard-won
energy, which would otherwise be used for making more program
progress. To address this issue, this paper introduces Kagura,
an adaptive cache compression extension with frequent power
failure in mind. Specifically, Kagura disables cache compression
when it finds out that many cached blocks are unlikely to be
reused before the next power outage. That way, Kagura avoids
the energy waste on useless compressions/decompressions, and
the resulting speedup is on par with the ideal intermittence-
aware cache compressor. Experimental results show that when
combined with an existing cache compressor, Kagura reduces
the total energy consumption by an average of 4.53% (up to
16.21%) and improves the performance by an average of 4.74%
(up to 17.87%) compared to the baseline EHS without cache
compression.

I. INTRODUCTION

Energy harvesting systems (EHSs) have emerged as a
compelling alternative to battery-powered embedded devices.
Thanks to their battery-free design, EHSs can operate for
an ultra-long time without maintenance, offering advantages
like environmental friendliness and self-sustainability [133].
EHSs are applicable across a wide range of fields, including
batteryless IoT [3], [27], [62], [76], [84], [173], [179], stream
and river monitoring [85], [146], health and wellness track-
ing [29], [31], [49], [57], [128], and wearable computing [37],
[45], [97], [114], [115]. Instead of using battery, EHSs harvest
energy from ambient sources such as radio frequency (RF)
and WiFi, storing the energy in a capacitor that serves as
an energy buffer. However, these sources tend to be unstable
and weak, causing EHSs to be frequently power-interrupted
with all volatile data lost [1], [17], [18], [20], [28], [46], [78],
[79], [88], [96], [98], [102], [108], [138], [161], [166]. This
is why EHSs are regarded as intermittent computing systems
[109], i.e., they operate only when their internal capacitors
hold enough energy. To prevent the loss of critical data and
ensure forward progress across frequent power outages, EHSs
incorporate both nonvolatile memory (NVM) [7], [36], [67],
[69], [75], [106], [157], [181] as main memory and a crash
consistency mechanism [80]–[82], [105], [132], [136], [170],

[176], [180], [182], [185]—e.g., just-in-time (JIT) checkpoint-
ing of volatile data when power fails and its restoration when
power returns [19], [24], [78], [89], [108], [110]–[112], [144],
[145], [165], [178].

Given unstable and weak input energy, maintaining high
energy efficiency is crucial for achieving high-performance
EHSs equipped with power-hungry NVM main memory. To
lower the NVM accesses, prior proposals [24], [44], [61],
[63], [118], [177], [184] leverage a volatile SRAM cache—
as in NVSRAMCache [63] that JIT-checkpoints dirty cache
blocks upon power failure. This strategy allows EHSs to
exploit spatial and temporal locality in program, retrieving
data from the cache rather than NVM whose dynamic access
energy is way higher than that of SRAM. As a result, EHSs
can dedicate their hard-won energy to forward progress and
eventually deliver better performance [177].

128256512 1k 2k 4k
0.6

0.8

1.0

Sp
ee

du
p

Fig. 1: Speedup over base-
line (256B each for ICache
and DCache) across differ-
ent cache sizes in bytes (B).

Although SRAM cache re-
duces NVM traffic, it leads to
extra energy waste caused by
leakage current which becomes
larger as cache size increases.
Because of this, EHSs cannot
afford larger SRAM caches.
Figure 1 shows the perfor-
mance of a typical EHS across
different cache sizes, normal-
ized to a baseline featuring
256B ICache and DCache; Section VIII details the simulation
configurations. With small caches (e.g., 128B), the EHS suffers
frequent misses that severely degrade performance. As the
cache size increases to 256B, more data locality is exploited,
reducing cache misses and improving performance. However,
when the cache size exceeds 256B, performance begins to
decline since the higher leakage energy accelerates capacitor
depletion, causing more frequent power outages. This, in
turn, forces the EHS to perform additional JIT checkpoints
and restorations, resulting in performance degradation that
outweighs the benefits of larger caches. The takeaway is that
EHSs face a critical dilemma that small caches suffer from
high miss rates, whereas large caches incur prohibitive
leakage. This necessitates techniques to better utilize the
precious cache capacity.

To improve cache utilization, researchers propose many
cache compression techniques [8]–[10], [14], [15], [21], [33],
[35], [56], [65], [91], [93], [119], [127], [131], [143], [154],

[156], [160], [162], [171], [186], [187]. They allow for more
data blocks to be accommodated in caches, thus increasing
the effective capacity of the caches, with a little increase in
hardware overhead and the associated leakage. For example,
BDI [131] selects a common base for each block so that each
value in the block can be represented as a delta, i.e., a data
block is now represented as one base plus multiple deltas.
Based on this representation, BDI requires fewer bits to store
a cache block, enabling higher cache utilization and thereby
improving overall performance by an average of 8.1% [131].

However, cache compressions are not free as they introduce
extra delay and energy consumption on cache access, which
could incur performance loss if they are blindly applied to
energy-constrained EHSs. When a new block is allocated to a
full cache set, compressors should compress both the incoming
block and some of the existing uncompressed blocks to make
room for it. Similarly, processors need to pay for a decompres-
sion cost whenever they access compressed blocks. To mitigate
these overheads, researchers [10] propose Adaptive Cache
Compressor (ACC) that activates compression only when it
is expected to increase cache hits and disables it otherwise to
avoid unnecessary latency and energy consumption.

While ACC [10] is effective for conventional processors,
it cannot bring the best performance for EHSs because it
does not take into account their frequent power interruptions.
Specifically, even though ACC can accurately predict that
many blocks will be reused and compress them in the cache
accordingly, a power interruption may occur before the reuse
happens, causing the compressed data to be lost and nullifying
the compression effort. Given the high frequency of power
outages, a significant portion of hard-won energy is wasted on
compressing such useless cache blocks, ultimately degrading
the performance of EHSs.

To this end, this paper introduces Kagura1, a cache compres-
sion extension designed with frequent power failure in mind,
aiming to optimize existing cache compressors for EHSs. In
particular, Kagura can prevent useless cache compressions
without negatively impacting cache hits. The core mechanism
of Kagura is to dynamically enable or disable compression
based on how likely cache blocks are to be reused before
power failure. When Kagura identifies that many cache blocks
are unlikely to be accessed before an outage, it disables cache
compression to avoid wasting energy on useless compression.
As such, even if the cache is full upon the arrival of a new
block, Kagura falls back to the conventional cache replacement
policy, i.e., finding a victim block for eviction, rather than
performing compression.

In the implementation, Kagura takes an insight that the
number of memory operations in a power cycle reflects how
many cache blocks are touched therein. Thus, at run time,
Kagura estimates the number of memory operations that will
be executed before the next power outage to decide whether to

1Kagura is a female character in Inuyasha, who describes herself as “the
wind, the free wind,” a soul unbound and carried by the currents of fate.
Likewise, our proposal Kagura moves with similar freedom, dynamically
shaping its behavior to the shifting power failure patterns of the EHS.

disable cache compression. When this number is small enough,
i.e., a few cached blocks will be accessed before they are lost,
Kagura turns off the cache compressor to avoid energy waste.
On the contrary, if the estimated number of memory operations
remains large, Kagura lets the compressor operate as usual to
maximize available cache space. In this way, Kagura strikes a
balance between energy efficiency and large effective cache
capacity.

Nevertheless, two challenges must be addressed before
Kagura can be put into practice. The first is determining
how many memory instructions will execute from a de-
cision point—where Kagura evaluates whether to disable
compression—through the end of the current power cycle.
This is challenging because power failure could happen at
any time and is inherently hard to predict. To overcome
this, Kagura uses the execution history of a prior power
cycle as an approximation, leveraging the observation that
program behavior remains consistent between two consecutive
(short) power cycles as detailed in Section VIII-B. Specifically,
Kagura tracks two counts: (1) memory instruction count from
the prior power cycle and (2) the count accumulated so far
in the current cycle up to the decision point. At that point,
Kagura subtracts the latter count from the former and uses the
difference to predict the number of memory instructions to be
executed before the current power cycle ends.

The second challenge lies in selecting a suitable decision
point within a power cycle. Basically, Kagura should disable
cache compression when the number of memory instructions
expected between the decision point and the end of the
current power cycle falls below a threshold. However, a fixed
threshold cannot consistently deliver optimal performance. If
the threshold is set too high, it may result in insufficient cache
space and thus extra cache misses. On the other hand, if the
threshold is too low, Kagura could miss many opportunities
to avert unnecessary compressions, wasting hard-won energy.
To address this, Kagura adjusts the threshold whenever EHS
reboots, based on the number of evicted cache blocks due to
disabled compression. That is, Kagura decreases the threshold
when the number of evicted cache blocks is high; otherwise,
Kagura increases the threshold.

Experiments using real power traces [63], [135] show that
for applications from Mibench [66] and Mediabench [97],
ACC reduces total energy by only 0.47% on average and
delivers a negligible performance gain of 0.0022% compared
to a baseline EHS without cache compression. After applying
Kagura to ACC, the total energy reduction reaches 4.53%, and
the performance gain rises to 4.74% compared to the baseline.
In summary, Kagura makes the following contributions:
• Kagura is the first to avert useless cache compressions for

EHSs taking into account their frequent power interruptions.
• Compared to the baseline, Kagura reduces energy waste by

up to 16.21% and execution time by as much as 17.87%.
The average speedup of Kagura (4.74%) is close to that of
the ideal intermittence-aware cache compressor (6.19%).

• Kagura incurs minimal hardware overhead, i.e., only a 2-bit
counter and 5 registers taking up 0.14% of the core area.

Energy harvesting

Cap

Monitor
C

a
p
a

ci
to

r
C

h
a
rg

e
Vrst

Vckpt

Vmin

off-time on-time JIT ckpt

Registers NVFF

CPU ckpt

Cache NVM

NVM

Fig. 2: Overall architecture of NVSRAMCache [63].

II. BACKGROUND

A. Energy Harvesting System

A substantial body of research has explored equipping
EHSs with volatile caches [24], [44], [61], [63], [118], [177],
[184]. In the literature, NVSRAMCache [63] stands out as
both promising and widely recognized. Figure 2 shows the
basic architecture of NVSRAMCache and how it works at
a high level. NVSRAMCache offers nonvolatile backups for
its cache and processor states, including a register file and a
store buffer. To guarantee correct program execution across
power outages, it employs a just-in-time (JIT) checkpointing
mechanism which proactively preserves necessary states right
before a power outage. Specifically, when the voltage monitor
detects that the capacitor voltage has dropped below the check-
point threshold Vckpt, NVSRAMCache immediately saves all
volatiles with the core pipeline halted, e.g., checkpointing
registers to nonvolatile flip-flops (NVFFs) and saving store
buffer and dirty cache blocks to their nonvolatile counterparts.

After completing the checkpoint, NVSRAMCache hiber-
nates until the capacitor recharges above the restoration thresh-
old Vrst; at this point, NVSRAMCache reboots with the
previously saved states restored and then resumes program
execution from the interruption point. In particular, the period
starting from when the EHS resumes until the next power
interruption occurs is referred to as a power cycle.

B. Cache Compression Algorithm

Cache compression has been an active research area for
decades, as it offers a compelling approach to increasing
effective cache capacity and reducing cache misses by storing
data in a compressed format. In this paper, we select 4 typ-
ical compression algorithms whose low hardware complexity
makes them suitable for EHSs. The following provides a brief
overview of the selected algorithms:
1. Dynamic Zero Compression (DZC) [160]: This simple
algorithm targets common zero-value bytes. It adds a Zero
Indicator Bit (ZIB) per byte so that zero bytes store only
the indicator rather than eight zero bits. On a cache access,
DZC checks the ZIB for the target memory location and
immediately treats the byte as zero if indicated.
2. Frequent Pattern Compression (FPC) [8]: FPC splits a
64B block into 32-bit words and matches each word against
common patterns (zeros, small sign-extended integers, re-
peating bytes). Matches are encoded with a 3-bit prefix,
while unmatched words remain uncompressed. The resulting

compressed words are organized into fixed-size segments for
alignment. When accessing a compressed block, FPC reads its
corresponding prefixes to reconstruct each 32-bit word therein.
3. C-Pack [35]: This algorithm conducts compression by
examining small data chunks to see if they match common
patterns or resemble recently seen data in a small dictionary.
Upon access, C-pack utilizes these codes to look up and
reconstruct the original data.
4. Base-Delta-Immediate (BDI) [131]: BDI compression lever-
ages intra-block value similarity by identifying a common base
value within a block. It then stores the base value plus a small
delta (typically 8 to 32 bits) for each subsequent value. During
a cache access, the original value is quickly reassembled by
adding its respective delta back to the shared base.

C. Adaptive Cache Compression

Existing cache compressions enable caches to store more
data blocks, but the associated overheads could potentially
outweigh their benefits. For memory-intensive workloads,
compressing blocks significantly increases effective cache
capacity and reduces miss rates, thereby improving perfor-
mance. However, for non-memory-intensive workloads, cache
compression may provide little or no benefit because the added
compression/decompression overheads can dominate.

In response, ACC [10] was proposed to enable compression
only when it contributes to cache hits. ACC monitors recent
cache behaviors—such as a block’s position in the LRU order
and its compressed size—and maintains a global saturating
counter called Global Compression Predictor (GCP). When
compression helps avoid cache misses, ACC increments the
GCP. On the other hand, when compression causes extra delay
for cache accesses due to decompression, it decrements GCP.
Based on the GCP value, ACC decides whether to enable
or disable cache compression. Specifically, if this counter is
positive, indicating that compression is beneficial overall, ACC
keeps the compressor active. Otherwise, it disables compres-
sion operations. In this manner, the cache dynamically adapts
its behaviors based on the current workload characteristics,
hence achieving a balance between increased effective capacity
and reduced access latency.

III. PREPARING CACHE COMPRESSION FOR EHSS

Realizing cache compression in EHS requires careful con-
sideration. The reason is that although compression can reduce
misses, it also brings extra costs associated with compression
and decompression. To model the effectiveness of cache com-
pression in EHS, we introduce two metrics: energy benefit
Ebenefit and waste Ewaste resulting from cache compression.
Assume that cache compression improves cache hit rate from
Rhit to R+

hit. For a total of N memory operations, the
number of NVM accesses eliminated by cache compression
is (R+

hit − Rhit) ∗ N . Accordingly, the total energy benefit
Ebenefit from cache compression for N memory operations
is given in Equation 1.

In this equation, Emiss denotes the energy consumed on
bringing a missed block from NVM to cache—including the

Emiss (pJ)0

50

R h
it %

a=0.75,e=1,f=1

Emiss (pJ)

R h
it %

a=0.75,e=1,f=0.5

Emiss (pJ)

R h
it %

a=0.75,e=1,f=0.25

Emiss (pJ)

R h
it %

a=0.75,e=0.5,f=1

Emiss (pJ)

R h
it %

a=0.75,e=0.5,f=0.5

Emiss (pJ)

R h
it %

a=0.75,e=0.5,f=0.25

100 200 300 400 500
Emiss (pJ)

0

50

R h
it %

a=0.5,e=1,f=1

100 200 300 400 500
Emiss (pJ)

R h
it %

a=0.5,e=1,f=0.5

100 200 300 400 500
Emiss (pJ)

R h
it %

a=0.5,e=1,f=0.25

100 200 300 400 500
Emiss (pJ)

R h
it %

a=0.5,e=0.5,f=1

100 200 300 400 500
Emiss (pJ)

R h
it %

a=0.5,e=0.5,f=0.5

100 200 300 400 500
Emiss (pJ)

R h
it %

a=0.5,e=0.5,f=0.25

Ecomp + Edecomp = 10 pJ Ecomp + Edecomp = 20 pJ Ecomp + Edecomp = 30 pJ Ecomp + Edecomp = 40 pJ

Fig. 3: Relationship among minimum ∆Rhit, compression and decompression cost (Ecomp + Edecomp), cache miss penalty
(Emiss), and different a, e and f .

energy for the miss handling itself, the NVM access energy,
the cache allocation energy, and the static energy during the
cache miss.

Ebenefit = (R+
hit −Rhit) ∗N ∗ Emiss (1)

Cache compression also necessitates extra energy costs for
compressing and decompressing blocks. Let Ecomp represent
the energy to compress a block when it is filled into a cache,
Edecomp stands for the energy to decompress a block when
it is accessed or evicted. For N memory operations, assume
that a fraction a of these operations access compressed blocks,
while the remaining 1− a access uncompressed blocks. Also,
let L denote the number of compressed cache block evictions.

Under these assumptions, the energy spent on decompres-
sion is (a ∗ N + L) ∗ Edecomp. Moreover, suppose that M
blocks are compressed upon insertion into the cache, i.e., the
compression energy cost is M ∗ Ecomp. Therefore, the total
energy waste incurred by cache compression is expressed in
Equation 2.

Ewaste = (a ∗N + L) ∗ Edecomp +M ∗ Ecomp (2)

By combining Equation 1 and 2, we get the total energy
reduction achieved through cache compression. This reduction
must be greater than zero for EHSs to realize performance
improvement, as shown in Inequality 3. By applying simple al-
gebraic transformation to Inequality 3, we derive the minimum
required improvement in cache hit rate (∆Rhit) necessary to
achieve net energy reduction as shown in Inequality 4, where
e and f stand for L

N and M
N , respectively. The takeaway is

that cache compression will benefit EHSs if and only if it
can improve the cache hit rate by at least the calculated
threshold ∆Rhit.

Etotal = Ebenefit − Ewaste > 0 (3)

∆Rhit = R+
hit−Rhit >

(a+ e) ∗ Edecomp + f ∗ Ecomp

Emiss
(4)

Inequality 4 demonstrates that the minimum required ∆Rhit

varies as Edecomp, Ecomp, and Emiss change. Figure 3 shows
the relationship among the minimum ∆Rhit, the combined
compression and decompression cost (Ecomp+Edecomp), and
the cache miss penalty (Emiss). Each subfigure of Figure 3
has different values of a, e and f . For example, a = 0.75

means 75% of memory operations access compressed cache
blocks; e = 0.5 indicates one compressed-block eviction for
every two memory operations; and f = 0.5 means that one
block is compressed for every two memory operations.

Figure 3 depicts that when a, e or f decreases, the minimum
required ∆Rhit also decreases, i.e., it becomes easier for
compression to provide net benefits. Conversely, as a, e or f
increases, cache compressor should achieve a larger improve-
ment in hit rate to deliver energy reduction and performance
gain for EHSs. In addition, each subfigure illustrates that either
increasing Ecomp + Edecomp or decreasing Emiss lowers the
minimum ∆Rhit needed for compression to be beneficial. If
these factors change in the opposite direction, the minimum
required ∆Rhit becomes higher.

IV. PROBLEM STATEMENT

Unfortunately, the analysis above does not consider frequent
power outages in EHSs. This is a critical factor because
the benefit of compression could significantly diminish if
compressed blocks are not accessed before an outage occurs.
If a power failure happens before the compressed data is
utilized, the hard-won energy spent on fetching the blocks and
compressing them is wasted. Ultimately, this wasted energy
leads to suboptimal performance in EHSs.

Figure 4 and 5 show how cache compressors can cause
energy waste. Figure 4 shows how a compressor can benefit
performance by allowing more data to fit in the cache, while
Figure 5 depicts that such a benefit can vanish in the event
of power failure. Both examples assume a 50% compression
ratio, meaning that each cache entry can hold up to 2 com-
pressed blocks. The caches in both cases start empty.

As shown in Figure 4 (no power failure), at time T1, the
processor issues 4 memory instructions accessing 4 distinct
cache blocks (A, B, C, and D). All four accesses miss in the
cache, incurring an energy waste of 4∗Emiss+4∗Ecomp; these
blocks are compressed as they are expected to be reused later
(1). Thanks to the ability to hold all 4 blocks, the following
4 memory instructions hit in the cache with an energy waste
of only 4 ∗ Edecomp. Here in the no power failure scenario,
the total energy waste is 4 ∗Emiss+4 ∗Ecomp+4 ∗Edecomp.

However, a power outage may occur during program exe-
cution, as shown in Figure 5. In this example, the processor

T1 T2

Voltile Cache ExecutionNVM

Miss
 A, B, C, D

A, B, C, D
have reuse.

T3
AC BD

A B C D

AC BD

A B C D

AC BD

A B C D

Hit
 A, B

Hit
 C, D

Fig. 4: Compressing cache blocks since they are going to be
reused, resulting an energy waste of 4 ∗Emiss +4 ∗Ecomp +
4 ∗ Edecomp.

T1 T2

Voltile Cache ExecutionNVM

Miss
 A, B, C, D

T3
AC BD

A B C D

A B

A B C DA B C D

Miss
 A, B

AC BD

A B C D

Miss
 C, D

Fig. 5: Compressed cache blocks are not reused before power
loss, resulting in an energy waste of 8 ∗ Emiss + 8 ∗ Ecomp.

still encounters 4 cache misses for blocks A, B, C, D at time
T1, resulting in an energy waste of 4 ∗Emiss. These 4 blocks
are then compressed in anticipation of future reuse, incurring
an additional energy waste of 4 ∗ Ecomp. Unfortunately, the
power outage causes all cache blocks to be lost before they
can be reused. Once power comes back, the processor finds
an empty cache and has to retrieve the same cache blocks
(A, B, C, and D) from NVM again, incurring another energy
waste of 4∗Emiss+4∗Ecomp. In this power failure scenario,
the total energy waste becomes 8 ∗Emiss +8 ∗Ecomp, which
is significantly higher than the energy waste of Figure 4. The
insight is that if the compression is aware of upcoming power
loss, the energy of 4∗Ecomp spent at time T1 can be averted
and instead used to advance program execution, thereby
achieving higher performance.

V. OVERVIEW OF KAGURA

What makes Kagura stand out is its ability to enable and
disable compression at run time with frequent power outages
in mind. This design maximizes the energy efficiency of
EHSs and ultimately improves their performance. Specifically,
Kagura switches between two operation modes: Compression
Mode (CM) and Regular Mode (RM). In CM, Kagura allows
the existing cache compressor to perform compression as
usual, while in RM, it disables compression. Kagura starts
with CM mode after reboot, and later enters into RM mode—
with cache compression turned off—when it determines that
the benefit of compression has become insufficient. More
precisely, Kagura enters into RM mode when the number
of memory accesses to be executed before the end of the
current power cycle is small, i.e., it is less than or equal to a
compression-disabling threshold (Nthres). Once EHSs resume
from power failure with their capacitors fully charged, Kagura
starts with CM mode again and repeats the process above.

Figure 6 shows how Kagura avoids energy waste on useless
compression in the presence of power failure. In this example,

T1 T2

Voltile Cache ExecutionNVM

Miss
 A, B, C, D

A B

A B C D

C D

A B C D A B C D

A B

A B C D

T1.5
C D

A B C D

T3

Miss
 A, B

Miss
 C, D

CM RM CM RM
𝑁𝑡ℎ𝑟𝑒𝑠 𝑁𝑡ℎ𝑟𝑒𝑠

Fig. 6: High-level workflow of Kagura with mode switching;
Kagura reduces energy waste to only 8 ∗ Emiss.

the cache has 2 data entries, and Nthres is set to 2. Initially,
the processor starts with an empty cache, and Kagura operates
in CM mode. At time T1, the processor encounters two cache
misses for blocks A and B, fetching them from NVM and
filling them into the cache, which results in an energy waste
of 2 ∗ Emiss. Since the cache is not yet full, Kagura does
not compress blocks A and B. Shortly after, at time T1.5,
Kagura determines that compression would not be beneficial
because only two memory accesses remain before the power
loss—exactly equal to Nthres. Kagura thus switches to RM
mode with compression disabled. As a result, when blocks
C and D are accessed, they replace blocks A and B; here
no compression energy is spent on any of the four blocks.
After power returns, Kagura enters into CM again. At time T2,
the processor encounters two misses for the block A and B,
leading to another energy waste of 2∗Emiss. Then, the number
of memory operations to be executed reaches Nthres again,
Kagura switches back to RM mode. As such, when blocks C
and D are accessed at time T3, Kagura evicts blocks A and B
to accommodate them, resulting in an additional energy waste
of 2 ∗ Emiss while still avoiding compression.

Compared to the total energy waste of 8∗Emiss+8∗Ecomp

observed in Figure 5 (where compression was uselessly per-
formed), the total energy cost here is only 8∗Emiss. This high-
lights Kagura’s effectiveness at avoiding useless compression
and the associated energy overhead; the additional 8∗Ecomp is
successfully eliminated. One might question Kagura’s decision
to switch to RM, arguing that remaining in CM could preserve
more space to accommodate future memory requests, thus
turning some potential misses into hits. However, this concern
is unwarranted for two primary reasons.

First, Kagura switches modes only when it predicts im-
minent power failure; the implication is that few memory
operations remain in the current power cycle. Second, the
cache blocks of the remaining memory operations are unlikely
to be reused during such a short amount of time left before
the imminent power failure; if reuse were expected, their
values would have been allocated to registers at compile time.
Under these conditions, disabling cache compression does not
introduce extra capacity misses—a point supported by our
cache miss rate evaluation results shown in Figure 15. As
a result, Kagura’s use of the uncompressed cache here is
adequate to retain the working set throughout the period from
the switching point until the next power failure.

VI. IMPLEMENTATION DETAILS

The key to Kagura’s success lies in determining (1) when
Kagura should disable cache compression and (2) how Kagura
should adjust the decision point for the compression disabling;
fixing this decision point is suboptimal, since program be-
havior and energy conditions vary over time. Recall that the
number of memory operations to be executed before a power
outage reflects how many cache blocks are to be accessed be-
fore the outage. Therefore, Kagura takes the expected number
of memory operations remaining in the current power cycle
as the metric to determine the decision point (i.e., when to
disable compression), while avoiding complex hardware struc-
tures. That is, Kagura disables cache compression when this
number reaches the compression-disabling threshold Nthres.
Now, the above two questions are converted into (1) how to
calculate this number in an energy-efficient way and (2) how
to dynamically adjust Nthres accordingly. Note that Kagura
should address both questions with minimal hardware over-
head, which would otherwise in turn offset the benefits of this
adaptive cache compression. The following two sections detail
how Kagura tackles each of these questions, respectively.

A. Determining When to Disable Compression

To decide whether to disable cache compression, Kagura
needs to check the number of memory instructions to be
executed before the next power outage. However, it is a
daunting challenge to know this number at run time since
power failure can occur unpredictably.

Simple Approach: Inspired by history-based predictions
in computer architecture, Kagura leverages historical data to
approximate the number of memory instructions to be executed
through the end of the current power cycle; this number is
denoted as Nremain. To be specific, Kagura uses the number
of committed memory operations in the prior power cycle
as a reference to estimate Nremain in the current cycle. Let
Nprev represent the number of committed memory operations
in the previous power cycle, and Nmem represent the number
accumulated so far in the current cycle up to the decision
point. Kagura computes Nremain simply as:

Nremain = Nprev −Nmem (5)

Kagura
Controller

Load Store
Queue (LSQ)

Rprev

Rmem

Radjust Rthres

Revict

DCache

Core
VolatileNV Data Path Signal

2-bit
cnt

Fig. 7: Overall architecture
of Kagura.

Whenever Nremain reaches the
threshold Nthres, Kagura dis-
ables cache compression to
avoid wasting energy on use-
less compression. To compute
Nprev and Nmem, Kagura pro-
poses 2 registers Rprev and
Rmem as shown in Figure 7.
Here, both Rprev and Rmem

are volatile, but Rmem should
be checkpointed to a desig-
nated NVFF on power failure.
Note that when rebooting, Rprev is initialized with the restored
value of Rmem, and Rmem is reset to zero. Upon committing
a memory instruction, Kagura performs 3 actions in a row:

(1) increasing Rmem by 1; (2) calculating the difference
Rprev −Rmem; (3) comparing the subtraction result with the
threshold Nthres to determine if cache compression should be
disabled. The threshold Nthres is kept in a volatile register
Rthres which is also JIT checkpointed to NVFF on power
failure, as shown in the figure.

Sophisticated Approach: While the simple approach is
straightforward, it is not adaptive to varying program behaviors
or energy conditions. This is because it assumes that EHSs
execute the same number of memory instructions in two
consecutive power cycles. However, this assumption does not
always hold, leading to the inaccurate computation of Nremain

and causing performance penalties. On the one hand, if the
number of memory instructions of the previous power cycle is
less than that of the current cycle, Nremain is underestimated.
This causes cache compression to be prematurely turned off,
tragically resulting in performance loss. On the other hand,
if Nremain is overestimated, cache compression is turned off
too late, wasting a significant portion of hard-won energy on
compressing useless data blocks in vain.

To mitigate the aforementioned issues, Kagura utilizes
Reward and Punishment Mechanism to accurately calculate
Nremain for each power cycle. Kagura is rewarded if the
computed Nremain is close to the actual number of committed
memory instructions in the current power cycle, and punished
otherwise. To implement this idea, Kagura uses a simple per-
core 2-bit saturating counter as shown in Figure 7. When
the difference between the computed and the actual number
is small, Kagura increases the counter by 1 as a reward.
Otherwise, Kagura decreases the counter by 1 as a punishment;
this saturation counter is also JIT checkpointed to NVFF right
before power failure occurs. After waking up from power
failure, Kagura consults the saturation counter and applies an
adjustment to Rprev if the counter equals 00 or 01.

CM RM CM RM

Radjust = Rmem – Rprev
Rprev = Rmem + Radjust

 = 2 ∗ Rmem - Rprev

Fig. 8: Radjust calculation and application.

The next step is to determine the value of the adjustment.
Kagura leverages a learning-based method that tracks the
difference between the estimated and actual numbers, and then
applies this difference as an adjustment to future estimation.
To achieve a lightweight implementation, Kagura introduces
another register Radjust for recording the difference between
Rmem and Rprev (1 in Figure 8). That is, Kagura computes
Radjust at the end of each power cycle, as below:

Radjust = Rmem −Rprev (6)

In the wake of the power failure, Kagura first restores Rmem

and Radjust and then updates Rprev as the sum of Rmem and
Radjust (2 in Figure 8). This lightweight approach allows
Kagura to ensure the estimation of Nremain is continually

refined based on the discrepancy between the actual and
estimated memory operation counts.

B. Adaptive Threshold Tuning for Compression Disabling

To adjust the compression-disabling threshold Nthres, a
simple approach is to select a number empirically upon reboot
and leave it unchanged during program execution. However,
the naive approach often leads to suboptimal performance
in that setting the threshold too high causes compression
to be halted prematurely, lowering effective cache capacity;
this can result in more evictions when new blocks are filled
in, ultimately degrading performance. Conversely, setting the
threshold too low wastes hard-won energy, compressing cache
blocks that are never accessed again before being lost due
to power failure. Consequently, Kagura seeks to figure out a
suitable compression-disabling threshold that balances energy
efficiency and performance.

To achieve this, Kagura monitors the evicted block count
to adjust Nthres. When a high number of evictions occurs,
indicating cache capacity is insufficient in the current cycle,
Kagura lowers the threshold. That way, Kagura performs cache
compression more aggressively, increasing effective cache
capacity in the next power cycle. On the other hand, a low
eviction count indicates sufficient cache room in the current
cycle, and therefore Kagura raises the threshold to allow for
greater energy savings in the next power cycle.

Kagura implements the above mechanism using another
register Revict, as shown in Figure 7. Revict is JIT check-
pointed to NVFF on power loss and tracks the number of
blocks evicted since the decision point. Once power comes
back, i.e., a new power cycle begins, Kagura uses the restored
Revict value to adjust Rthres following a so-called Additive
Increase/Multiplicative Decrease (AIMD) as with other adap-
tation proposals [2], [5], [6], [83], [99], [134]. That is, Kagura
halves Rthres if Revict is larger than half of Rthres. Otherwise,
Kagura increases Rthres by 10%, which averts raising Rthres

too quickly and thus in turn maintains low cache miss rates.
Figure 9 shows how Kagura adjusts Rthres. For the sake of

example, Kagura initializes Rthres with 8 and Revict with 0,
respectively. At the end of the first power cycle at time T1,
Revict is set to 6 because 6 blocks have been evicted. Here,
Revict is greater than half of 8, and upon reboot (Reboot 1 in
the figure), Kagura thus lowers Rthres to 4 and resets Revict to
0. During the second power cycle ending at time T2, only one
block is evicted, updating Revict to 1. In the beginning of the
third power cycle (Reboot 2 in the figure), Kagura increases
Rthres from 4 to 5 since Revict (1) is less than half of 4.

C. Putting It All Together

Figure 10 illustrates Kagura’s overall operations. Initially,
the registers are set as follows: Rmem = 20, Radjust = 5,
Rthres = 8, and Revict = 1. At the start of a power
cycle at time T0, Kagura restores Rprev to the value of
Rmem, capturing the committed memory operation count in
the previous power cycle, and then resets it. At time T1,
Kagura applies Radjust to Rprev , updating it from 20 to 25.

Revict ExecutionNVM

RM RM
Evictions

CMCM

Rthres

Eviction

T0 T1

CM

T2

T0 T1 Reboot 1 T2 Reboot 2

𝐑𝐞𝐯𝐢𝐜𝐭 0 0 → 6 6 → 0 0 → 1 1 → 0

𝐑𝐭𝐡𝐫𝐞𝐬 8 8 8 → 4 4 4 → 5

Reboot 1 Reboot 2

Fig. 9: Timeline of adaptively adjusting Rthres.

T0,T1 T4,T5T2 T3

CM RM CM RM

T0 T1 T2 T3 Outage T4 T5

𝐑𝐩𝐫𝐞𝐯 → 20 20 → 25 25 25 → 22 22 → 19

𝐑𝐦𝐞𝐦 20 → 0 0 0 → 16 16 → 22 22 (ckpt) 22 → 0 0

𝐑𝐚𝐝𝐣𝐮𝐬𝐭 5 5 5 5 → -3 -3 (ckpt) -3 -3

𝐑𝐭𝐡𝐫𝐞𝐬 8 8 → 9 9 9 9 (ckpt) 9 9 → 5

𝐑𝐞𝐯𝐢𝐜𝐭 1 1 → 0 0 0 → 6 6 (ckpt) 6 6 → 0

Fig. 10: An example of dynamic switching operation modes
with registers updated; T2 is a decision point.

Next, Kagura evaluates whether to adjust Rthres. Since Revict

is less than half of Rthres. Kagura increases Rthres to 9 and
resets Revict to 0. The core pipeline then runs until it reaches a
decision point at time T2 where the difference Rprev −Rmem

equals Rthres. Kagura then enters into RM mode with cache
compression disabled, and begins counting block evictions
using Revict. By the end of the power cycle at time T3, 6
blocks have been evicted, and 22 memory operations have
been committed. At this point, Kagura updates Radjust by
subtracting Rprev(25) from Rmem(22)—resulting in -3—as
shown in Equation 6. Then, just before the impending power
failure, Kagura JIT checkpoints all registers except Rprev.
After power is restored at time T4, Kagura begins the recovery
process; it loads the saved Rmem value into Rprev , resets
Rmem to 0, and at time T5 completes the recovery by
adjusting Rprev based on Radjust (-3), halving Rthres (as
Revict ≤ Rthres), and clearing Revict.

VII. DISCUSSION

A. Impact of Peripheral Operations

This paper only evaluates application kernel. However, in
real-world systems, EHS workloads also include I/O oper-
ations. To ensure the freshness of inputs from peripherals
[48], [95], [103], [137], existing EHSs typically group I/O
operations and their related computations into atomic regions
[23], [70], [113], [147], with an extra checkpoint, i.e., saving
register states and dirty cache blocks to NVM, at the start
of each region. During atomic region execution, EHSs tem-
porarily disable JIT checkpointing to avoid taking inconsistent
snapshots. As such, power-interrupted atomic regions can be
restored by restoring to the beginning of the region and re-
executing from there.

This region-level checkpointing incurs more energy con-
sumption, bringing more opportunities for Kagura to avoid
energy waste. The reason is that these checkpoints consume

extra energy, and therefore EHSs suffer more frequent outages,
rendering many compressions useless as blocks go unused
before power loss. As such, Kagura’s dynamic disabling of
compression thus prevents more energy waste. Moreover, by
reducing the energy waste, Kagura allows EHS to commit
more instructions for each power cycle (the bottom of Fig-
ure 13). These extra committed instructions make it more
likely that an atomic region completes without interruption,
thus reducing re-execution overhead and improving overall
performance.

B. Impact on Batteryless Artificial Intelligence of Things
(AIoT) Systems

Batteryless AIoT systems [47], [60], [73], [74], [140], [174]
adopt machine learning for EHSs to achieve intelligent edge
computation. With the help of Kagura, the AIoT devices
can improve the energy efficiency and the quality of service
(QoS). That is because the AIoT workloads, particularly those
involving machine learning inference, exhibit high memory
intensity yet require low latency for the QoS; data cache
helps satisfy the low latency requirement, and compressing
the cache allows the AIoT device to use a larger model while
maintaining the QoS. This gives Kagura more opportunities
to prevent useless compressions and reduce the energy waste
under variable conditions, thereby improving the QoS of the
AIoT systems.

C. Impact of Checkpoint Region Size

Unlike NVSRAMCache [63], some EHSs do not rely
on JIT checkpointing [24], [61], [70], [113], [118], [147],
[184]. Instead, these systems perform checkpoints periodi-
cally but not necessarily at a fixed interval (region). They
vary the checkpoint region size—adapting to different energy
conditions—to maintain the performance. As the checkpoint
region shrinks, the EHSs perform their checkpoints more
frequently during execution, consuming additional energy and
triggering more power outages, in which case Kagura has more
opportunities to prevent useless compressions. Conversely, a
larger checkpoint region reduces the number of outages and,
thus, the chances for Kagura to intervene. In our evaluation,
the baseline EHS employs JIT checkpointing, i.e., it performs a
single checkpoint right before each power outage, minimizing
the checkpoint number. Even under this scenario, Kagura still
demonstrates notable performance gains.

VIII. EVALUATION AND EXPERIMENTAL ANALYSES

We implement Kagura and several other cache compressors
atop gem5 [26]—a cycle-level simulator—to model a single-
core, in-order processor clocked at 200 MHz. All evaluated
applications are compiled for ARMv7-M instruction set and
statically linked. To estimate energy use, we leverage the
low-power cell (LOP) provided in McPAT [104] with 45
nm technology, following prior work [112]. As our baseline,
we evaluate NVSRAMCache [63]—a standard JIT-checkpoint-
based EHS—without cache compression and model the volt-
age monitor’s initialization overhead, propagation latency, and

TABLE I: Simulation Configuration.
No Compressor ACC Kagura

Energy buffer 4.7 µF capacitor
Core Single-core in-order five-stage pipeline

Clock Rate 200 MHz

ICache/DCache
256B 2-way SRAM with 32B block size,

LRU replacement, 1 cycle hit latency,
write-back policy, access: 9 pJ

Compression
Algorithm N/A BDI, compress: 3.84 pJ ,

decompress: 0.65 pJ
Main Memory 16MB ReRAM

ReRAM config. tCK/tBURST/tRCD/tCL/tWTR/tWR/tXAW
= 0.94/7.5/18.0/15.0/7.5/150/30

energy consumption. To assess the benefit of compression, we
integrate ACC into both the ICache and DCache of NVS-
RAMCache. Finally, we enable Kagura for ACC to measure
the extra gains Kagura brings to that design. Table I lists all
of the key simulation parameters for each configuration.

We utilize 20 applications from Mediabench [97] and
MiBench [66] for evaluation [107]. To see how Kagura
performs under ambient energy conditions, we conduct sim-
ulations using a real-world RF power trace (RFHome in
Figure 11) [63]. To ensure consistent energy input across
different configurations, we use an energy harvester to collect
ambient energy and record the average power values in a text
file. Each entry in the file represents the average power over
a 10µs interval (i.e., Pavg = E10µs/10µs, where E10µs is the
energy harvested during that interval). During each simulation,
the system reads these values to charge the capacitor and
power the processor, guaranteeing that all experiments use the
same energy budget for fair comparisons.

0 2
Time/10µs 1e6

0

10

20

Po
we

r/µ
W

RFHome

0 2
Time/10µs 1e6

0

10

20

Po
we

r/µ
W

solar

0 2
Time/10µs 1e6

22

24

Po
we

r/µ
W

thermal

Fig. 11: Ambient power traces.

A. Hardware Overhead Analysis

Kagura only requires a little hardware because of its simple
logic: only a 2-bit counter and five 32-bit registers—Rmem,
Rthres, Rprev , Radjust and Revict—for a total of 162 bits.
According to CACTI [151] at 45 nm, these registers take up
at most 0.000796 mm2 which is only 0.14% of the 0.538
mm2 core (including caches) as reported by McPAT [104].

B. Program Behaviors Across Power Cycles

We observe that program behavior remains consistent be-
tween two neighboring power cycles. To show this consistency,
we measure how they differ in committed load/store counts
and CPI (cycles per instruction). The bar chart of Figure 12
shows that the committed load, store and CPI differ by only
5.73%, 14.11% and 5.26% on average, respectively. The ob-
servation is also supported by the line chart of the figure which
depicts the percentage of the neighboring cycles that have less
than 20% difference. The result shows that the majority of
the neighboring cycles have less than 20% differences in load

basicm
blowfishd

blowfishe fft
g721d

g721e
gsmd

gsme ifft jpegd
jpege

mpeg2d
patricia

rijndaeldsha
strin

gs
susanc

susane
susans

typeset
gmean01020304050

Di
ff.

 %
Load Store CPI

50
60
70
80
90
100

Ra
tio

 %

Fig. 12: Program behavior between 2 neighboring power cycles; bars (left y-axis) show the difference in load/store counts and
CPI between two cycles, while lines (right y-axis) show the percentage of neighboring cycles that have < 20% difference.

1.0
1.2

Sp
ee

du
p

basicm
blowfishd

blowfishe fft
g721d

g721e
gsmd

gsme ifft jpegd
jpege

mpeg2d
patricia

rijndaeldsha
strin

gs
susanc

susane
susans

typeset
gmean

1.0
1.1

In
st

%

No Compressor ACC ACC + Kagura ACC + Kagura (ideal)

Fig. 13: Speedup (top) and average committed instruction count increase per power cycle (bottom) over NVSRAMCache.

0.
0

40
.5

44
.0

47
.5

51
.0

92
.5

0

5

10

Pe
rc

en
t (

%
)

basicm

33
.5

35
.0

36
.5

38
.5

40
.0

19
16

.0

0

20

40
blowfishd

33
.5

35
.0

36
.5

38
.5

40
.0

19
16

.0

0

20

40
blowfishe

0.
0

8.
5

38
.5

42
.0

46
.0

21
4.

0
0

10

20

fft

28
.5

29
.5

30
.5

31
.5

32
.5

76
.5

0

20

40

Pe
rc

en
t (

%
)

g721d

34
.0

35
.5

37
.0

38
.5

40
.0

83
.5

0

20

40
g721e

0.
0

78
.5

86
.0

93
.5

10
1.

0
12

5.
00

5

10
gsmd

0.
0

64
.5

76
.0

88
.0

10
5.

5
12

4.
00

2

4

gsme

0.
0

10
.5

39
.5

43
.0

46
.0

21
5.

0

0

10

20

Pe
rc

en
t (

%
)

ifft

0.
0

45
.5

56
.5

68
.5

81
.5

96
.0

0.0

2.5

5.0

jpegd

0.
0

46
.5

53
.0

59
.0

65
.5

10
7.

00.0

2.5

5.0

jpege

0.
0

44
.0

48
.5

51
.5

54
.0

15
9.

50

10

mpeg2d

0.
0

43
.5

47
.0

51
.0

54
.5

10
9.

00

5

10

Pe
rc

en
t (

%
)

patricia

0.
0

10
.5

48
.0

52
.0

55
.5

11
9.

5

0

10

20
rijndaeld

0.
0

90
.5

93
.5

96
.0

99
.0

13
8.

50

5

10
sha

0.
0

49
.5

53
.0

56
.5

60
.0

11
4.

00

5

10
strings

0.
0

41
.5

45
.5

49
.0

53
.5

13
1.

5

Inst (k).

0

5

10

Pe
rc

en
t (

%
)

susanc

0.
0

42
.5

53
.0

58
.0

81
.5

13
1.

5

Inst (k).

0

5

susane

0.
0

43
.0

77
.5

82
.0

86
.0

13
3.

0

Inst (k).

0

5

susans

0.
0

39
.0

44
.0

48
.5

54
.0

27
46

.5

Inst (k).

0

5

typeset

Fig. 14: Power cycle length distribution for each application.

(86.91%), store (80.27%) and CPI (88.48%), serving as a basis
for Kagura to make decisions based on the previous power
cycle. Furthermore, Figure 14 presents the power cycle length
distribution for each application; y-axis shows the probability
density of a given power cycle length shown in x-axis denoting
the number of committed instructions (in thousands). The
results show that most power cycles have comparable length,
providing a foundation for Kagura to reference the previous
cycle when estimating the new one.

C. Run-Time Performance

The top of Figure 13 depicts performance comparison of
a compressor-free baseline, ACC, and ACC with Kagura
across various benchmarks. On average, ACC alone delivers
a 0.0022% performance improvement over the baseline. This
trivial gain is due to frequent power failure which causes the
loss of compressed cache data and renders the compression
effort useless. Moreover, the energy overhead from compres-
sion and decompression further degrades the performance
benefits. When Kagura is combined with ACC, the overall
performance gain increases to 4.74% compared to the baseline.
Figure 13 also plots the ideal gains of ACC and Kagura—i.e.,
assuming perfect knowledge of when to disable compression.
To obtain this ideal case, we execute ACC+Kagura on each
application using the RFHome trace in two phases. In the
first run, we record a detailed trace capturing whether each
compression operation actually contributes to cache hits and
whether omitting it would lead to additional misses. In the
second run, the simulator uses this trace as input, allowing
the ideal system to adaptively decide in advance whether to
perform each compression based on the recorded outcomes.
Under this ideal scenario, performance improves by 6.19%
over the baseline, just 1.39% above the ACC + Kagura. Also,
the bottom of Figure 13 shows average committed instruction
counts per power cycle. Compared to the baseline, ACC alone
executes 0.28% more committed instructions for each power
cycle on average. When combined with Kagura, the average
committed instruction significantly increases to 4.57%.

Notably, both ACC and its combination with Kagura show
limited improvements for some applications, including blow-
fishd, blowfishe and g721d. This is because these programs
do not heavily rely on cache resources, so ACC naturally
reduces compression. With fewer compression operations,
Kagura has fewer opportunities to optimize performance and
energy by averting useless compressions. Additionally, ACC
performs worse than the baseline for some applications, e.g.,
jpegd, mpeg2d, susans and typeset, as it often unnecessarily
compresses blocks that receive no hits before being lost

basicm
blowfishd

blowfishe fft
g721d

g721e
gsmd

gsme ifft jpegd
jpege

mpeg2d
patricia

rijndaeldsha
strin

gs
susanc

susane
susans

typeset
gmean

10 1
100
101
102

M
iss

 %
ICache DCache ICache (ACC) DCache (ACC) ICache (ACC + Kagura) DCache (ACC + Kagura)

Fig. 15: Cache miss rates comparison.

basicm
blowfishd

blowfishe fft
g721d

g721e
gsmd

gsme ifft jpegd
jpege

mpeg2d
patricia

rijndaeldsha
strin

gs
susanc

susane
susans

typeset
gmean0.00.20.40.60.81.0

En
er

gy
 %

Compress Decompress Cache (other) Memory Ckpt+Rst Others

Fig. 16: Normalized energy breakdown to compressor-free NVSRAMCache (baseline). Cache (other) in the legend means all
the cache energy consumption except for compression and decompression. Others includes CPU pipeline energy and energy
buffer leakage. There are three bars for each application. From left to right: NVSRAMCache, ACC, and ACC + Kagura.

on power outages. Fortunately, Kagura identifies and avoids
these useless compressions, allowing ACC to achieve better
performance.

D. Impact of Arithmetic Intensity

Arithmetic intensity, defined as the ratio of arithmetic to
memory operations, is a key factor influencing Kagura’s ef-
fectiveness. We select six applications with varying arithmetic
intensities to examine the relationship between performance
and arithmetic intensity. As shown in Figure 17, Kagura’s
performance improvement exhibits a clear inverse relation-
ship with arithmetic intensity, i.e., performance increases
as arithmetic intensity decreases. This trend arises because
applications with more memory operations (e.g., jpegd and
jpege) generate frequent cache activity, allowing Kagura’s
adaptive compression control to prevent useless compressions
and improve energy efficiency. In contrast, workloads with
fewer memory operations (e.g., patricia and strings) benefit
less from Kagura, as compression overhead plays a smaller
role in their overall execution.

jpegd jpege mpeg2d fft patricia strings

1.1

1.2

Sp
ee

du
p

Speedup Arithmetic Intensity

2

3

In
te

ns
ity

Fig. 17: Performance vs. arithmetic intensity across applica-
tions

E. Cache Miss Rate

Figure 15 shows how ACC and Kagura affect cache miss
rates across various applications. Using only ACC reduces
1.45% ICache miss rates and 2.29% for DCache. When we
combine Kagura with ACC, the miss rates decrease even
further (2.71% for ICache and 3.24% for DCache), since most
compressions averted by Kagura are useless which does not
negatively impact cache hits. Furthermore, by preventing these
useless compressions, Kagura saves valuable energy, allowing

EHSs to make more forward progress before encountering
power outages. Consequently, when running the same applica-
tion, Kagura allows EHSs to experience fewer power outages;
that is, Kagura reduces the number of cache data loss and thus
allows cache blocks to contribute to more cache hits.

F. Compression Operation Reduction

Figure 18 shows the number of compression operations
eliminated by Kagura when it is applied to ACC. On aver-
age, Kagura cuts down compression operations by ≈ 9.85%
and over 40% for some applications like g721d and g721e.
However, a high cache compression reduction ratio does not
translate to significant performance improvements or energy
savings. This is because (1) Kagura might occasionally avert
useful compressions and thus lead to more cache misses, (2)
and if compression and decompression account for a small
portion of the total energy cost, then even eliminating useless
compressions may only yield trivial gains.

ba
sic

m
bl

ow
fis

hd
bl

ow
fis

he fft
g7

21
d

g7
21

e
gs

m
d

gs
m

e iff
t

jp
eg

d
jp

eg
e

m
pe

g2
d

pa
tri

cia
rij

nd
ae

ld
sh

a
st

rin
gs

su
sa

nc
su

sa
ne

su
sa

ns
ty

pe
se

t
gm

ea
n0

10
20
30
40
50
60

Co
m

pr
es

s %

Fig. 18: Compression reduction ratio by Kagura.

G. Energy Efficiency

To clearly show energy savings provided by Kagura, we
normalize its total energy consumption to that of baseline
and break it down into six portions: Compress, Decompress,
Cache (other), Memory, Checkpoint/Restoration and Others
as shown in Figure 16. The results show that compression
and decompression incur average energy overheads of 6.88%
and 3.06% for ACC (relative to the baseline’s total energy).
After enabling Kagura, the compression and decompression
energy overheads fall to 4.12% and 2.75%, and the total energy

consumption is reduced by 4.53% on average.

H. Sensitivity Analysis

1) EHS Designs

Figure 19 compares NVSRAMCache, NvMR [24] and
SweepCache [184] with and without ACC and Kagura en-
abled. All speedups are normalized to each EHS. Although this
figure has two bars of + ACC + Kagura, we only focus on the
memory-based variant (+ ACC + Kagura (mem)) which is the
default design choice for Kagura. More details about memory-
based and voltage-based variants (+ ACC + Kagura (vol))
are in Section VIII-H2. For a fair comparison, we calibrated
NvMR and SweepCache to achieve their optimal performance
under our default settings. For NvMR, we adjusted its map
table, map table cache, and free list to 128, 16 and 145 entries.
For SweepCache, we reduced persist buffers to 32 entries
and recompiled the application to regenerate boundaries. With
ACC applied, the gain of NvMR and SweepCache is slightly
improved by 0.82% and 0.18%, respectively. After we further
apply Kagura, the speedups increase to 5.54% and 3.15%.
2) Trigger Strategies for Kagura

By default, we leverage committed memory operations to
decide the suitable time to trigger Kagura before power failure
(denoted as + ACC + Kagura (mem) in Figure 19). In the
literature, an alternative method is voltage-based trigger (+
ACC + Kagura (vol)) [54], [55], which halts compression
whenever capacitor voltage drops below a predefined threshold
signaling an imminent power failure. A key drawback of the
voltage-based trigger is its heavy dependence on a complex
monitor that must track three separate thresholds—backup,
restoration, and Kagura’s trigger. In contrast, our memory-
based trigger imposes no extra voltage-monitoring require-
ments and can even work in JIT-checkpoint-free EHSs that
forgo complex monitors. This is especially valuable because
many designs—including those in [41]–[43], [71], [118],
[158], as well as recent work like SweepCache [184] and
NvMR [24]—strive to avoid such complex monitors because
of their extra energy cost (8.5% of total energy consumption
as reported in [53]), hardware complexity, and security vul-
nerability [38]–[40], [64].

To assess how trigger methods affect various EHS designs,
we reproduce NvMR and SweepCache (see Section VIII-H1).
Figure 19 shows that on NVSRAMCache, the voltage-based
trigger achieves a very similar performance gain as the
memory-based one. However, for NvMR and SweepCache,
the voltage-based trigger degrades the performance of ACC
by 0.23% and 2.81% due to its heavy dependency on voltage
monitoring. On the contrary, the memory-based trigger can
still achieve good performance (5.54% for NvMR and 3.15%
for SweepCache).
3) Integration with Other Cache Managements

Researchers introduce some other cache management for
EHSs, including dead block prediction (EDBP [54]) and
prefetching (IPEX [55]). We reproduce these two works and
evaluate them atop our baseline (without any dead block pre-

NVSRAMCache NvMR SweepCache
0.96
0.98
1.00
1.02
1.04
1.06

Sp
ee

du
p

NVSRAMCache||NvMR||SweepCache
+ ACC
+ ACC + Kagura (mem)
+ ACC + Kagura (vol)

Fig. 19: Different trigger
methods on different EHSs.

EDBP IPEX1.00
1.03
1.05
1.08
1.10
1.12
1.15
1.18
1.20

Sp
ee

du
p

Baseline + EDBP/IPEX
EDBP/IPEX + ACC
EDBP/IPEX + ACC + Kagura

Fig. 20: Kagura with different
cache managements.

dictors and prefetchers) with the same configuration in Table I;
our EDBP implementation is built on top of Cache Decay [87].
Figure 20 shows the performance impact of combining cache
compressors with EDBP and IPEX. As shown in Figure 20,
compared to the baseline, EDBP achieves a performance gain
of 5.32%, which increases to 12.14% when it is combined
with ACC and Kagura. Besides, applying ACC and Kagura to
IPEX improves its performance from 12.73% to 18.37%.
4) Adaptation Schemes for Rthres

Kagura empirically selects AIMD policy to adaptively ad-
just Rthres. We also evaluate another 3 adaptation policies:
Multiplicative Increase/Additive Decrease (MIAD), Additive
Increase/Additive Decrease (AIAD), and Multiplicative In-
crease/Multiplicative Decrease (MIMD). Figure 21 shows that
MIAD and MIMD perform poorly since aggressive threshold
increase can suppress useful compressions, leading to more
cache misses. Thus, using additive increase is more suitable
for Rthres adjustment. Besides, the policies incorporating a
multiplicative decrease allow immediate threshold reduction
and thus avert unnecessary cache misses. Combining these
analyses, we select AIMD for Rthres adjustment (marked by
a red star in the figure).
5) Increase Step for Rthres

Note that the increase step of Rthres defaults to 10%. To
show how it affects performance, we vary the increase step
from 5% to 20%. Figure 22 shows that small (5%) and large
(15% and 20%) steps are either too conservative or aggressive
and cannot achieve the best performance. Thus, Kagura picks
a 10% step to strike a balance between energy saving and
compression efficiency.
6) Power Cycle Number for Memory Operation Estimation

TABLE II: Performance impact of different numbers of power
cycles used for memory estimation.

Cycle 1 (default) 2 3 4
Speedup 4.74% 4.09% 3.35% 2.60%

By default, Kagura uses the memory-operation count from
the previous power cycle to estimate that of the current one.
In this subsection, we vary the number of past power cycles
being examined from 1 to 4 to see how it impacts performance.
We compute a weighted average of the memory operations
in each previous power cycle. That is, more recent cycles
receive a higher weight. For example, when using two cycles
(with C2 being more recent than C1), we give C2 twice
the weight of C1 (i.e., Nprev = C1+2∗C2

1+2). Table II shows

AIMD MIAD AIAD MIMD
0.96
0.98
1.00
1.02
1.04
1.06

Sp
ee

du
p

No Compressor
ACC
ACC + Kagura

Fig. 21: Adapt Scheme.
5% 10% 15% 20%

0.96
0.98
1.00
1.02
1.04
1.06

Sp
ee

du
p

No Compressor
ACC
ACC + Kagura

Fig. 22: Rthes size.
BDI FPC C-Pack DZC

0.96
0.98
1.00
1.02
1.04
1.06

Sp
ee

du
p

No Compressor
ACC
ACC + Kagura

Fig. 23: Compressor.
128256512 1k 2k 4k0.50

0.60
0.70
0.80
0.90
1.00
1.10
1.20

Sp
ee

du
p

No Compressor
ACC
ACC + Kagura

Fig. 24: Cache size(B).
1 2 4 80.85

0.90
0.95
1.00
1.05

Sp
ee

du
p

No Compressor
ACC
ACC + Kagura

Fig. 25: Cache way.

16 32 64
0.96
0.98
1.00
1.02
1.04
1.06

Sp
ee

du
p

Fig. 26: Block size.
2 4 8 16 32

0.96
0.98
1.00
1.02
1.04
1.06

Sp
ee

du
p

Fig. 27: Mem size(MB).
ReRAM PCM STTRAM

0.96
0.98
1.00
1.02
1.04
1.06

Sp
ee

du
p

Fig. 28: Mem type.
0.47 1 4.7 10 100 1k0.90

1.00
1.10
1.20
1.30
1.40

Sp
ee

du
p

Fig. 29: Capacitor(µF).
RFHome Solar Thermal

0.96
0.98
1.00
1.02
1.04
1.06

Sp
ee

du
p

Fig. 30: Power trace.

that examining only one prior power cycle delivers the best
performance because program behaviors remain consistent
across the previous power cycle (see Section VIII-B).
7) Compression Algorithms

We evaluate Kagura’s effectiveness across different com-
pression algorithms, including BDI [131], FPC [8], C-Pack
[35], and DZC [160]. As illustrated in Figure 23, with different
compression algorithms, the performance of ACC over the
baseline is 0.0022% (BDI), 1.50% (FPC), 0.99% (C-Pack),
and 1.00% (DZC). When combined with Kagura, these im-
provements increase to 4.74% (BDI), 4.40% (FPC), 4.10% (C-
Pack), and 2.41% (DZC), respectively, i.e., Kagura effectively
reduces useless compressions across all tested algorithms.
8) Cache Sizes

We tested various cache sizes ranging from 128B to 4kB
as shown in Figure 24. All values are normalized to the
NVSRAMCache baseline with 128B caches. Across all tested
cache sizes, the combination of ACC and Kagura always
delivers significant performance improvements ranging from
1.97% to 5.85%. We observe that Kagura yields greater
benefits with smaller caches: limited capacity forces ACC to
compress more blocks, and frequent power interruptions then
render many of these compressions wasted—conditions under
which Kagura is most effective. Moreover, Kagura ’s gains
shrink with larger caches, since they hold more uncompressed
data and trigger fewer compressions, leaving fewer useless
operations for Kagura to eliminate.
9) Cache Ways

We evaluated how cache associativity affects Kagura by
testing the same cache size with different numbers of ways,
from direct-mapped to 8-way set-associative, as shown in
Figure 25. Overall, the combination of ACC and Kagura
consistently improves performance across all cache designs,
delivering gains ranging from 4.74% to 5.73%.
10) Cache Block Sizes

Cache block size critically affects the efficiency of Kagura
and other compression schemes: larger blocks reduce the
number of compressions but increase the energy and latency

per operation, while smaller blocks lower per-compression
cost at the expense of more frequent compressions. As Figure
26 demonstrates, Kagura maintains good performance across
block sizes from 16B to 64B.
11) Main Memory Sizes

We evaluate Kagura across different main memory sizes
as shown in Figure 27. It shows that Kagura always helps
ACC achieve good performance. However, the performance
gain from Kagura becomes smaller when the memory size gets
larger, decreasing from 4.22% to 3.69% as the memory size
grows from 2MB to 32MB. This happens because larger NVM
increases the energy cost per cache miss, potentially offsetting
the savings of Kagura’s elimination of useless compression.
12) Main Memory Types

Different NVM types have different cache miss penalties,
which may affect the performance of Kagura. To verify the
effectiveness of Kagura, we use three types of NVM as shown
in Figure 28. The results reveal that Kagura can always deliver
a promising speedup with all evaluated NVMs, e.g., a 4.67%
speedup with PCM and a 4.68% speedup with STTRAM.
13) Capacitor Sizes

TABLE III: Capacitor leakage over total energy cost.
Cap(µF) 0.47 1 4.7 10 100 1k

Leak 0.001% 0.002% 0.01% 0.03% 0.28% 5.91%

Capacitor size affects how often power interruptions occur
in EHSs. Larger capacitors store more energy and extend
power cycles but at the cost of longer charging time and
higher leakage. Table III shows that capacitor leakage grows
significantly with size—for instance, a 1000 µF capacitor
accounts for 5.91% of total energy. Smaller capacitors charge
quickly and leak less, but they run out faster, leading to more
frequent outages and associated JIT checkpoint and restoration
costs. Capacitor size also affects how well cache compression
works. With small capacitors where power cycle is short,
compressor has fewer chances to make compression. The
reason is that in the wake of power failure, EHS restarts with
empty caches, so cache blocks are allocated uncompressed
until the cache set fills up. At that point, there may be only
a few memory operations before the next outage, resulting

in only limited opportunities for compression. In contrast,
larger capacitor provides longer power cycles, allowing more
compression opportunities once the cache set is full.

Figure 29 shows that Kagura consistently brings benefits
across all capacitor sizes. All values are normalized to NVS-
RAMCache with a 0.47 µF capacitor. We find that as the
capacitor increases from 0.47 µF to 4.7 µF , the performance
benefit of Kagura over ACC grows—initially limited by the
fewer compression opportunities at 0.47 µF because short
power cycles provide few compressions and thus offer limited
opportunities for Kagura to eliminate useless compressions.
Kagura averts more useless compressions when the capacitor
reaches 4.7 µF . However, as the capacitor further increases
over 4.7 µF , the gap narrows: larger capacitors mean fewer
outages and compressions, and thus fewer useless compres-
sions for Kagura to eliminate, so Kagura’s benefit over ACC
diminishes. Overall, we find that a 4.7 µF capacitor can help
EHS achieve the best performance gain across all evaluated
capacitors with the help of ACC and Kagura. Thus, we select
it as the default capacitor size.
14) Power Traces

We evaluate Kagura using three different power traces [63],
[135] as shown in Figure 30. Solar and thermal sources have
relatively higher portions of stable energy, while RFHome has
less (as shown in Figure 11). The results show that Kagura
consistently improves the performance of ACC across various
energy conditions. When enabling ACC with Kagura, the
performance over the baseline is 4.74%, 4.58% and 4.54%
with RFHome, solar and thermal.
15) Counter Bits

TABLE IV: Performance impact of different counter sizes.
Bits 1 2 (default) 3

Speedup 3.98% 4.74% 4.21%

Kagura employs a 2-bit saturating counter by default to
update Rprev at the beginning of each power cycle (Section
VI-A). We also evaluate Kagura with 1-bit and 3-bit counters.
As shown in Table IV, these counters exhibit suboptimal
performance since they are either too aggressive or too con-
servative in adjusting Rprev . Consequently, Kagura adopts the
2-bit counter as its default setting, providing the best balance
between responsiveness and stability.

IX. OTHER RELATED WORK

Many proposals have introduced cache compression to
reduce cache misses [4], [11]–[13], [16], [22], [25], [30],
[32], [34], [50]–[52], [58], [59], [68], [72], [77], [86], [90],
[92], [94], [100], [101], [116], [117], [120]–[126], [129],
[130], [139], [141], [142], [148]–[150], [152], [152], [153],
[155], [159], [163], [164], [167]–[169], [172], [175], [183].
For example, Bit-Plane Compression (BPC) [91] compresses
data by first computing small differences (deltas) between
neighboring values, reorganizing these deltas into bit-planes,
and then using XOR between adjacent bit-planes to create
long runs of zeros and other recurring patterns that can be

encoded. Upon access, BPC decodes the pattern to get deltas,
reverses the XOR and bit-plane transformation, and finally
performs a cumulative sum from the base value to recover
the original data. CC [171] replaces frequent values in a
block with short codes while leaving rare values in place
with pointers. On each access, CC uses a simple mask to
tell compressed entries, and maps codes back to full values.
DISH [127] divides a 64B block into sixteen 4B chunks
and builds a shared dictionary—either storing up to eight
full chunks with fixed-width pointers or using 28-bit keys
plus low-bit offsets. Indirect Index Cache with Compression
(IIC-C) [68] breaks blocks into variable-sized subblocks stored
indirectly via multiple pointers, allowing saved space to be
flexibly reallocated to other data. This ensures that frequently
accessed blocks are decompressed on demand to mitigate
latency penalties, while data transferred on the bus and held in
main memory remains compressed to reduce bandwidth usage.

X. CONCLUSION

This paper introduces Kagura, an adaptive cache compres-
sion extension that improves the efficiency of EHSs by taking
into account their frequent power outages. Specifically, Kagura
monitors the number of remaining memory operations in each
power cycle to decide whether to enable or disable cache
compression. When upcoming power interruption is likely,
Kagura disables compression to avoid wasting energy on data
that will not be reused before the outage. Experimental results
demonstrate that integrating Kagura with an existing adaptive
compression scheme yields an average energy reduction of
4.53% and a performance improvement of 4.74% compared
to baseline EHS that lacks cache compression.

ACKNOWLEDGMENT

We appreciate anonymous reviewers for their insightful and
valuable comments. This work is in part supported by NSF
grants 2153749 and 2314681.

REFERENCES

[1] H. Aantjes, A. Y. Majid, and P. Pawełczak, “A testbed for transiently
powered computers,” in arXiv preprint, 2016.

[2] S. Ahmad, H. Guan, B. D. Friedman, T. Williams, R. K. Sitaraman,
and T. Woo, “Proteus: A high-throughput inference-serving system
with accuracy scaling,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1, 2024.

[3] S. Ahmed, B. Islam, K. S. Yildirim, M. Zimmerling, P. Pawełczak,
M. H. Alizai, B. Lucia, L. Mottola, J. Sorber, and J. Hester, “The
internet of batteryless things,” Communications of the ACM, vol. 67,
no. 3, 2024.

[4] E. Ahn, S.-M. Yoo, and S.-M. S. Kang, “Effective algorithms for cache-
level compression,” in Proceedings of the 11th Great Lakes symposium
on VLSI, 2001.

[5] S. Ainsworth and T. M. Jones, “Paramedic: Heterogeneous parallel
error correction,” in 2019 49th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), 2019.

[6] S. Ainsworth, L. Zoubritzky, A. Mycroft, and T. M. Jones, “Paradox:
Eliminating voltage margins via heterogeneous fault tolerance,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2021.

[7] K. Akhunov, K. S. Yildirim, J. Choi, and C. Jung, “Adaptive computing
in memory meets conventional batteryless platforms,” ACM Transac-
tions on Embedded Computing Systems, vol. 24, no. 6, 2025.

[8] A. Alameldeen and D. Wood, “Frequent pattern compression: A
significance-based compression scheme for l2 caches,” University of
Wisconsin-Madison, Tech. Rep., 2004.

[9] A. R. Alameldeen and R. Agarwal, “Opportunistic compression for
direct-mapped dram caches,” in Proceedings of the International Sym-
posium on Memory Systems, 2018.

[10] A. Alameldeen and D. Wood, “Adaptive cache compression for high-
performance processors,” in Proceedings. 31st Annual International
Symposium on Computer Architecture, 2004., 2004.

[11] L. M. AlBarakat, P. V. Gratz, and D. A. Jiménez, “Slap-cc: Set-
level adaptive prefetching for compressed caches,” in 2022 IEEE 40th
International Conference on Computer Design (ICCD), 2022.

[12] C. Aliagas, C. Molina, M. Garcia, A. Gonzalez, and J. Tubella, “Value
compression to reduce power in data caches,” in Euro-Par 2003 Parallel
Processing: 9th International Euro-Par Conference Klagenfurt, Austria,
August 26-29, 2003 Proceedings 9, 2003.

[13] A. Arelakis, F. Dahlgren, and P. Stenstrom, “Hycomp: A hybrid cache
compression method for selection of data-type-specific compression
methods,” in Proceedings of the 48th International Symposium on
Microarchitecture, 2015.

[14] A. Arelakis and P. Stenstrom, “Sc2: A statistical compression cache
scheme,” in 2014 ACM/IEEE 41st International Symposium on Com-
puter Architecture (ISCA), 2014.

[15] A. Arelakis and P. Stenström, “A case for a value-aware cache,” IEEE
Computer Architecture Letters, vol. 13, no. 1, 2014.

[16] A. Arunkumar, S.-Y. Lee, V. Soundararajan, and C.-J. Wu, “Latte-cc:
Latency tolerance aware adaptive cache compression management for
energy efficient gpus,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2018.

[17] A. Bakar, R. Goel, J. De Winkel, J. Huang, S. Ahmed, B. Islam,
P. Pawełczak, K. S. Yıldırım, and J. Hester, “Protean: An energy-
efficient and heterogeneous platform for adaptive and hardware-
accelerated battery-free computing,” in Proceedings of the 20th ACM
Conference on Embedded Networked Sensor Systems, 2022.

[18] A. Bakar, R. Goel, J. de Winkel, J. Huang, S. Ahmed, B. Is-
lam, P. Pawelczak, K. S. Yildirim, and J. Hester, “Protean: Adap-
tive hardware-accelerated intermittent computing,” GetMobile: Mobile
Computing and Communications, vol. 27, no. 1, 2023.

[19] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining computation during
intermittent supply for energy-harvesting systems,” in IEEE Embedded
Systems Letters 7, 1 (2014), 15–18, 2014.

[20] S. Beeby and N. White, “Energy harvesting for autonomous systems,”
in Artech House, Incorporated., 2014.

[21] L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-assisted
data compression for energy minimization in systems with embedded
processors,” in Proceedings 2002 Design, Automation and Test in
Europe Conference and Exhibition, 2002.

[22] L. Benini, A. Macii, and A. Nannarelli, “Cached-code compression
for energy minimization in embedded processors,” in ISLPED’01:
Proceedings of the 2001 International Symposium on Low Power
Electronics and Design (IEEE Cat. No.01TH8581), 2001.

[23] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac,
“Peripheral state persistence for transiently-powered systems,” in 2017
Global Internet of Things Summit (GIoTS), 2017.

[24] A. Bhattacharyya, A. Somashekhar, and J. S. Miguel, “Nvmr: Non-
volatile memory renaming for intermittent computing,” in Proceedings
of 49th International Symposium on Computer Architecture, 2022.

[25] E. Billo, R. Azevedo, G. Araujo, P. Centoducatte, and E. W. Netto,
“Design of a decompressor engine on a sparc processor,” in 2005 18th
Symposium on Integrated Circuits and Systems Design, 2005.

[26] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, 2011.

[27] J. Bito, R. Bahr, J. G. Hester, S. A. Nauroze, A. Georgiadis, , and
M. M. Tentzeris, “A novel solar and electromagnetic energy harvesting
system with a 3-d printed package for energy efficient internet-of-
things wireless sensors,” in IEEE Transactions on Microwave Theory
and Techniques 65, 5 (2017), 2017.

[28] P. Cahill, R. O’Keeffe, N. Jackson, A. Mathewson, , and V. Pakrashi,
“Energy-harvesting thermoelectric sensing for unobtrusive water and
appliance metering,” in In Proceedings of the 2nd International Work-
shop on Energy Neutral Sensing Systems, ENSsys, 2014.

[29] P. Cahill, R. O’Keeffe, N. Jackson, A. Mathewson, , and V. Pakrashi,
“Structural health monitoring of reinforced concrete beam using piezo-
electric energy harvesting system,” in In EWSHM-7th European work-
shop on structural health monitoring, 2014.

[30] R. Canal, A. González, and J. E. Smith, “Value compression for effi-
cient computation,” in Euro-Par 2005 Parallel Processing: 11th Inter-
national Euro-Par Conference, Lisbon, Portugal, August 30-September
2, 2005. Proceedings 11, 2005.

[31] S. Cao and J. Li, “A survey on ambient energy sources and harvesting
methods for structural health monitoring applications,” in Advances in
Mechanical Engineering 9, 4 (2017), 2017.

[32] D. R. Carvalho and A. Seznec, “Conciliating speed and efficiency on
cache compressors,” in 2021 IEEE 39th International Conference on
Computer Design (ICCD), 2021.

[33] D. R. Carvalho and A. Seznec, “Understanding cache compression,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 18, no. 3, 2021.

[34] D. Chen, E. Peserico, and L. Rudolph, “A dynamically partitionable
compressed cache,” 2003.

[35] X. Chen, L. Yang, R. P. Dick, L. Shang, and H. Lekatsas, “C-pack: A
high-performance microprocessor cache compression algorithm,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2010.

[36] Y. Chen, “Reram: History, status, and future,” IEEE Transactions on
Electron Devices, vol. 67, no. 4, 2020.

[37] Q. Cheng, Z. Peng, J. Lin, S. Li, , and F. Wang, “Energy harvesting
from human motion for wearable devices,” in 10th IEEE International
Conference on Nano/Micro Engineered and Molecular Systems, 2015.

[38] J. Choi, H. Joe, C. Jung, and J. Choi, “Defending against emi attacks
on just-in-time checkpoint for resilient intermittent systems,” in 57th
International Symposium on Microarchitecture (MICRO), 2024.

[39] J. Choi, J. Choi, H. Joe, and C. Jung, “Caphammer: Exploiting capac-
itor vulnerability of energy harvesting systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024.

[40] J. Choi, H. Joe, and C. Jung, “Capos: Capacitor error resilience for
energy harvesting systems,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 11, 2022.

[41] J. Choi, H. Joe, Y. Kim, and C. Jung, “Achieving stagnation-free
intermittent computation with boundary-free adaptive execution,” in
2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2019.

[42] J. Choi, L. Kittinger, Q. Liu, and C. Jung, “Compiler-directed high-
performance intermittent computation with power failure immunity,”
in 2022 IEEE 28th Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), 2022.

[43] J. Choi, Q. Liu, and C. Jung, “Cospec: Compiler directed speculative
intermittent computation,” in In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019.

[44] J. Choi, J. Zeng, D. Lee, C. Min, and C. Jung, “Write-light cache
for energy harvesting systems,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023.

[45] Y.-W. Chong, W. Ismail, K. Ko, , and C.-Y. Lee, “Energy harvesting for
wearable devices: A review,” in IEEE Sensors Journal 19, 20 (2019),
2019.

[46] H. Cılasun, S. Resch, Z. I. Chowdhury, M. Zabihi, Y. Lv, B. Zink, J.-P.
Wang, S. S. Sapatnekar, and U. R. Karpuzcu, “On error correction for
nonvolatile processing-in-memory,” in 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA), 2024.

[47] L. L. Custode, P. Farina, E. Yildiz, R. B. Kilic, K. S. Yildirim, and
G. Iacca, “Fast-inf: ultra-fast embedded intelligence on the batteryless
edge,” in Proceedings of the 22nd ACM Conference on Embedded
Networked Sensor Systems, 2024.

[48] Y. Dong, P. Fan, and K. B. Letaief, “Energy harvesting powered sensing
in iot: Timeliness versus distortion,” IEEE Internet of Things Journal,
vol. 7, no. 11, 2020.

[49] V. Dsouza, J. Pronk, C. Peppelman, V. I. Madariaga, T. Pereira-Cenci,
B. Loomans, and P. Pawełczak, “Densor: An intraoral battery-free
sensing platform,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 8, no. 4, 2024.

[50] J. Dusser, T. Piquet, and A. Seznec, “Zero-content augmented caches,”
in Proceedings of international conference on Supercomputing, 2009.

[51] J. Dusser and A. Seznec, “Decoupled zero-compressed memory,” in
Proceedings of the 6th International Conference on High Performance
and Embedded Architectures and Compilers, 2011.

[52] M. Ekman and P. Stenstrom, “A robust main-memory compression
scheme,” in International Symposium on Computer Architecture, 2005.

[53] G. Fang, J. Choi, and C. Jung, “Hybrid power failure recovery
for intermittent computing,” in Proceedings of the 43rd IEEE/ACM
International Conference on Computer-Aided Design, 2025.

[54] G. Fang and C. Jung, “Rethinking dead block prediction for inter-
mittent computing,” in 2025 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2025.

[55] G. Fang, J. Zeng, A. Gupta, and C. Jung, “Rethinking prefetching for
intermittent computing,” in Proceedings of the 52nd Annual Interna-
tional Symposium on Computer Architecture, 2025.

[56] P. Franaszek, J. Robinson, and J. Thomas, “Parallel compression
with cooperative dictionary construction,” in Proceedings of Data
Compression Conference - DCC ’96, 1996.

[57] T. Galchev, J. McCullagh, R. Peterson, and K. Najafi, “A vibration
harvesting system for bridge health monitoring applications,” in In
Proc. PowerMEMS, 2010.

[58] A. Ghasemazar, M. Ewais, P. Nair, and M. Lis, “2dcc: Cache com-
pression in two dimensions,” in 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2020.

[59] A. Ghasemazar, P. Nair, and M. Lis, “Thesaurus: Efficient cache com-
pression via dynamic clustering,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020.

[60] G. Gobieski, N. Beckmann, and B. Lucia, “Intermittent deep neural
network inference,” in SysML Conference, vol. 48, 2018.

[61] H. Gong, H. He, L. Pan, B. Gao, J. Tang, S. Pan, J. Li, P. Yao, D. Wu,
H. Qian et al., “An error-free 64kb reram-based nvsram integrated
to a microcontroller unit supporting real-time program storage and
restoration,” IEEE Transactions on Circuits and Systems, 2023.

[62] M. Gorlatova, J. Sarik, G. Grebla, M. Cong, I. Kymissis, , and
G. Zussman, “Movers and shakers: Kinetic energy harvesting for the
internet of things,” in ACM international conference on Measurement
and modeling of computer systems, 2014.

[63] Y. Gu, Y. Liu, Y. Wang, H. Li, and H. Yang, “Nvpsim: A simulator for
architecture explorations of nonvolatile processors,” in 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC), 2016.

[64] X. Guo, H. Zhu, Y. Jin, and X. Zhang, “When capacitors attack:
Formal method driven design and detection of charge-domain trojans,”
in Design, Automation & Test in Europe (DATE), 2019.

[65] Y. Guo, Y. Hua, and P. Zuo, “Dfpc: A dynamic frequent pattern
compression scheme in nvm-based main memory,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2018.

[66] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in In Proceedings of the fourth annual
IEEE international workshop on workload characterization, 2001.

[67] F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform storage
performance with 3d xpoint technology,” Proceedings of the IEEE,
vol. 105, no. 9, 2017.

[68] E. G. Hallnor and S. K. Reinhardt, “A unified compressed memory
hierarchy,” in 11th International Symposium on High-Performance
Computer Architecture, 2005.

[69] N. Hassan, B. Min, C. Jung, Y. Solihin, and J. Choi, “Warmcache:
Exploiting stt-ram cache for low-power intermittent systems,” in 52nd
Annual International Symposium on Computer Architecture, 2025.

[70] J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently
powered batteryless sensors,” in Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems, 2017.

[71] M. Hicks, “Clank: Architectural support for intermittent computation,”
in ACM SIGARCH Computer Architecture News, 2017.

[72] S. Hong, B. Abali, A. Buyuktosunoglu, M. B. Healy, and P. J. Nair,
“Touché: Towards ideal and efficient cache compression by mitigating
tag area overheads,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019.

[73] X. Hou, X. Tang, J. Liu, C. Li, L. Liang, and K.-T. Cheng, “Wasp:
Efficient power management enabling workload-aware, self-powered
aiot devices,” IEEE Transactions on Parallel and Distributed Systems,
vol. 35, no. 8, 2024.

[74] X. Hou, T. Xu, C. Li, C. Xu, J. Liu, Y. Hu, J. Zhao, J. Leng, K.-
T. Cheng, and M. Guo, “A tale of two domains: Exploring efficient
architecture design for truly autonomous things,” in 51st Annual
International Symposium on Computer Architecture (ISCA), 2024.

[75] Y. Huai et al., “Spin-transfer torque mram (stt-mram): Challenges and
prospects,” AAPPS bulletin, vol. 18, no. 6, 2008.

[76] S.-Y. Huang, J. Zeng, X. Deng, S. Wang, A. Sifat, B. Bharmal, J.-B.
Huang, R. Williams, H. Zeng, and C. Jung, “Rtailor: Parameterizing
soft error resilience for mixed-criticality real-time systems,” in 2023
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2023, pp. 344–
357.

[77] A. Jadidi, M. Arjomand, M. T. Kandemir, and C. R. Das, “Hybrid-
comp: A criticality-aware compressed last-level cache,” in 2018 19th
International Symposium on Quality Electronic Design (ISQED), 2018.

[78] H. Jayakumar, A. Raha, and V. Raghunathan, “Quickrecall: A low
overhead hw/sw approach for enabling computations across power
cycles in transiently powered computers,” in In 2014 27th International
Conference on VLSI Design and 2014 13th International Conference
on Embedded Systems, 2014.

[79] H. Jayakumar, A. Raha, and V. Raghunathan, “Quickrecall: A low
overhead hw/sw approach for enabling computations across power
cycles in transiently powered computers,” in In VLSI Design. IEEE
Computer Society, 330–335, 2014.

[80] J. Jeong, J. Hong, S. Maeng, C. Jung, and Y. Kwon, “Unbounded
hardware transactional memory for a hybrid dram/nvm memory sys-
tem,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2020.

[81] J. Jeong and C. Jung, “Pmem-spec: persistent memory speculation
(strict persistency can trump relaxed persistency),” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021.

[82] J. Jeong, J. Zeng, and C. Jung, “Capri: Compiler and architecture
support for whole-system persistence,” in International Symposium on
High-Performance Parallel and Distributed Computing, 2022.

[83] C. Jung, D. Lim, J. Lee, and S. Han, “Adaptive execution techniques
for smt multiprocessor architectures,” in The 10th ACM SIGPLAN
symposium on Principles and practice of parallel programming, 2005.

[84] P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. Leung, ,
and Y. L. Guan, “Wireless energy harvesting for the internet of things,”
in IEEE Communications Magazine 53, 6 (2015), 2015.

[85] E. Kamenar, S. Zelenika, D. Blažević, S. Maćešić, G. Gregov,
K. Marković, , and V. Glažar, “Harvesting of river flow energy for
wireless sensor network technology,” in Microsystem Technologies 22,
7 (2016), vol. 22, 2016.

[86] R. Kanakagiri, B. Panda, and M. Mutyam, “Mbzip: Multiblock data
compression,” ACM Transactions on Architecture and Code Optimiza-
tion (TACO), vol. 14, no. 4, 2017.

[87] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting
generational behavior to reduce cache leakage power,” in Proceedings
28th Annual International Symposium on Computer Architecture, 2001.

[88] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith, “Passive wi-fi:
Bringing low power to wi-fi transmissions,” in NSDI, 2016.

[89] H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, J. Lee, and C. Jung,
“Compiler-directed soft error resilience for lightweight gpu register file
protection,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 989–
1004.

[90] J. Kim, S. Hong, J. Hong, and S. Kim, “Cid: Co-architecting instruc-
tion cache and decompression system for embedded systems,” IEEE
Transactions on Computers, vol. 70, no. 7, 2021.

[91] J. Kim, M. Sullivan, E. Choukse, and M. Erez, “Bit-plane compression:
Transforming data for better compression in many-core architectures,”
in 2016 ACM/IEEE 43rd Annual International Symposium on Com-
puter Architecture (ISCA), 2016.

[92] S. Kim, J. Kim, J. Lee, and S. Hong, “Residue cache: A low-energy
low-area l2 cache architecture via compression and partial hits,” in
International Symposium on Microarchitecture (MICRO), 2011.

[93] M. Kjelso, M. Gooch, and S. Jones, “Design and performance of a
main memory hardware data compressor,” in Euromicro Conference.
Beyond 2000: Hardware and Software Design Strategies, 1996.

[94] M. Kjelsø, M. Gooch, and S. Jones, “Empirical study of memory-data:
Characteristics and compressibility,” IEE Proceedings-Computers and
Digital Techniques, vol. 145, no. 1, 1998.

[95] H. Ko, H. Lee, T. Kim, and S. Pack, “Information freshness-guaranteed
and energy-efficient data generation control system in energy harvesting
internet of things,” IEEE Access, vol. 8, 2020.

[96] V. Kortbeek, S. Ghosh, J. Hester, S. Campanoni, and P. Pawełczak,
“Wario: efficient code generation for intermittent computing,” in Pro-
ceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, 2022.

[97] C. Lee, M. Potkonjak, , and W. H. Mangione-Smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in In Proceedings of 30th Annual International Symposium
on Microarchitecture, 1997.

[98] H. G. Lee and N. Chang, “Powering the iot: Storage-less and converter-
less energy harvesting,” in In Design Automation Conference (ASP-
DAC), 2015 20th Asia and South Pacific. IEEE, 124–129, 2015.

[99] J. Lee, J.-H. Park, H. Kim, C. Jung, D. Lim, and S. Han, “Adaptive
execution techniques of parallel programs for multiprocessors,” Journal
of Parallel and Distributed Computing, vol. 70, no. 5, 2010.

[100] J.-S. Lee, W.-K. Hong, and S.-D. Kim, “Design and evaluation of a
selective compressed memory system,” in International Conference on
Computer Design: VLSI in Computers and Processors, 1999.

[101] J.-S. Lee, W.-K. Hong, and S.-D. Kim, “An on-chip cache compression
technique to reduce decompression overhead and design complexity,”
Journal of systems Architecture, vol. 46, no. 15, 2000.

[102] W. S. Lee, H. Jayakumar, and V. Raghunathan, “When they are not
listening: Harvesting power from idle sensors in embedded systems,”
in In 5th International Green Computing Conference, 2014.

[103] S. Leng and A. Yener, “Learning to transmit fresh information in energy
harvesting networks,” IEEE Transactions on Green Communications
and Networking, vol. 6, no. 4, 2022.

[104] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
42nd International Symposium on Microarchitecture (MICRO), 2009.

[105] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung,
“ido: Compiler-directed failure atomicity for nonvolatile memory,” in
International Symposium on Microarchitecture (MICRO), 2018.

[106] Q. Liu and C. Jung, “Lightweight hardware support for transparent
consistency-aware checkpointing in intermittent energy-harvesting sys-
tems,” in 2016 5th Non-Volatile Memory Systems and Applications
Symposium (NVMSA), 2016.

[107] Q. Liu, X. Wu, L. Kittinger, M. Levy, and C. Jung, “Benchprime:
Effective building of a hybrid benchmark suite,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 16, 2017.

[108] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John,
Y. Xie, J. Shu, and H. Yang, “Ambient energy harvesting nonvolatile
processors: From circuit to system,” in 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2015.

[109] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermit-
tent computing: Challenges and opportunities,” in In LIPIcs-Leibniz
International Proceedings in Informatics, Vol. 71. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[110] G. Lukosevicius, A. R. Arreola, and A. S. Weddell, “Using sleep
states to maximize the active time of transient computing systems,”
in Proceedings of the Fifth ACM International Workshop on Energy
Harvesting and Energy-Neutral Sensing Systems, 2017.

[111] K. Ma, X. Li, S. Li, Y. Liu, J. J. Sampson, Y. Xie, and V. Narayanan,
“Nonvolatile processor architecture exploration for energy-harvesting
applications,” IEEE Micro, vol. 35, no. 5, 2015.

[112] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson,
Y. Xie, and V. Narayanan, “Architecture exploration for ambient energy
harvesting nonvolatile processors,” in In IEEE 21st International Sym-
posium on High Performance Computer Architecture (HPCA), 2015.

[113] K. Maeng and B. Lucia, “Supporting peripherals in intermittent systems
with just-in-time checkpoints,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2019.

[114] M. Magno and D. Boyle, “Wearable energy harvesting: From body
to battery,” in In 2017 12th International Conference on Design and
Technology of Integrated Systems In Nanoscale Era (DTIS), 2017.

[115] M. Magno, D. Kneubuhler, P. Mayer, and L. Benini, “Micro kinetic
energy harvesting for autonomous wearable devices,” in In 2018 Inter-
national symposium on power electronics, electrical drives, automation
and motion (SPEEDAM), 2018.

[116] M. Minkin and B. Kasikci, “Zipchannel: Cache side-channel vulnera-
bilities in compression algorithms,” in 2024 54th IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), 2024.

[117] S. Mittal, J. S. Vetter, and L. Jiang, “Addressing read-disturbance
issue in stt-ram by data compression and selective duplication,” IEEE
Computer Architecture Letters, vol. 16, no. 2, 2016.

[118] S. Mohapatra, V. Kortbeek, M. A. van Eerden, J. Broekhoff, S. Ahmed,
and P. Pawełczak, “Data cache for intermittent computing systems
with non-volatile main memory,” in Proceedings of the 30th ACM

International Conference on Architectural Support for Programming
Languages and Operating Systems, 2025.

[119] T. M. Nguyen and D. Wentzlaff, “Morc: A manycore-oriented com-
pressed cache,” in 2015 48th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2015.

[120] K. Oka, S. Kawakami, T. Tanimoto, T. Ono, and K. Inoue, “Enhancing
a manycore-oriented compressed cache for gpgpu,” in Proceedings of
the International Conference on High Performance Computing in Asia-
Pacific Region, 2020.

[121] O. Ozturk, M. Kandemir, M. J. Irwin, and S. Tosun, “On-chip memory
management for embedded mpsoc architectures based on data com-
pression,” in Proceedings IEEE International SOC Conference, 2005.

[122] O. Ozturk, G. Chen, M. Kandemir, and I. Kolcu, “Compiler-guided
data compression for reducing memory consumption of embedded
applications,” in Proceedings of the 2006 Asia and South Pacific Design
Automation Conference, 2006.

[123] O. Ozturk, M. Kandemir, and M. J. Irwin, “Increasing on-chip memory
space utilization for embedded chip multiprocessors through data
compression,” in Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, 2005.

[124] O. Ozturk, H. Saputra, M. Kandemir, and I. Kolcu, “Access pattern-
based code compression for memory-constrained embedded systems,”
in Design, Automation and Test in Europe, 2005.

[125] Z. Pan, F. Zhang, Y. Zhou, J. Zhai, X. Shen, O. Mutlu, and X. Du,
“Exploring data analytics without decompression on embedded gpu
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 7, 2021.

[126] B. Panda and A. Seznec, “Synergistic cache layout for reuse and
compression,” in Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques, 2018.

[127] B. Panda and A. Seznec, “Dictionary sharing: An efficient cache com-
pression scheme for compressed caches,” in 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016.

[128] G. Park, T. Rosing, M. D. Todd, C. R. Farrar, and W. Hodgkiss, “Energy
harvesting for structural health monitoring sensor networks,” in Journal
of Infrastructure Systems 14, 1 (2008), vol. 14, 2008.

[129] J. Park, S. Baek, H. G. Lee, C. Nicopoulos, V. Young, J. Lee, and
J. Kim, “Hope: Hot-cacheline prediction for dynamic early decompres-
sion in compressed llcs,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 22, no. 3, 2017.

[130] G. Pekhimenko, T. Huberty, R. Cai, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Exploiting compressed block size as an
indicator of future reuse,” in 2015 IEEE 21st international symposium
on high performance computer architecture (HPCA), 2015.

[131] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: practical data
compression for on-chip caches,” in International Conference on Par-
allel Architectures and Compilation Techniques, 2012.

[132] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” ACM
SIGARCH Computer Architecture News, vol. 42, no. 3, 2014.

[133] S. Priya and D. J. Inman, “Energy harvesting technologies,” 2009.
[134] N. Rajesh, H. Devarajan, J. C. Garcia, K. Bateman, L. Logan, J. Ye,

A. Kougkas, and X.-H. Sun, “Apollo: An ml-assisted real-time storage
resource observer,” in Proceedings of the 30th International Symposium
on High-Performance Parallel and Distributed Computing, 2021.

[135] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for
long-running computation on rfid-scale devices,” SIGARCH Comput.
Archit. News, vol. 39, no. 1, mar 2011.

[136] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in Proceedings of the 48th International Symposium on
Microarchitecture, 2015.

[137] Q. Ren, T.-T. Chan, H. Pan, K.-H. Ho, and Z. Du, “Information fresh-
ness and energy harvesting tradeoff in network-coded broadcasting,”
IEEE Wireless Communications Letters, vol. 11, no. 10, 2022.

[138] L. Rizzon, M. Rossi, R. Passerone, and D. Brunelli, “Wireless sensor
networks for environmental monitoring powered by microprocessors
heat dissipation,” in In Proceedings of the 1st International Workshop
on Energy Neutral Sensing Systems (ENSSys), 2013.

[139] D. Rodrigues Carvalho and A. Seznec, “A case for partial co-allocation
constraints in compressed caches,” in International Conference on
Embedded Computer Systems, 2021.

[140] A. Sabovic, M. Aernouts, D. Subotic, J. Fontaine, E. De Poorter, and
J. Famaey, “Towards energy-aware tinyml on battery-less iot devices,”
Internet of Things, vol. 22, 2023.

[141] S. Sardashti, A. Seznec, and D. A. Wood, “Skewed compressed
caches,” in 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, 2014.

[142] S. Sardashti, A. Seznec, and D. A. Wood, “Yet another compressed
cache: A low-cost yet effective compressed cache,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 13, no. 3, 2016.

[143] J. A. Storer and T. G. Szymanski, “Data compression via textual
substitution,” J. ACM, vol. 29, no. 4, Oct. 1982.

[144] F. Su, Y. Liu, Y. Wang, and H. Yang, “A ferroelectric nonvolatile
processor with 46mus system-level wake-up time and 14mus sleep time
for energy harvesting applications,” in IEEE Transactions on Circuits
and Systems, 2016.

[145] F. Su, K. Ma, X. Li, T. Wu, Y. Liu, and V. Narayanan, “Nonvolatile
processors: Why is it trending?” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017, 2017.

[146] W. Sun, T. Tan, Z. Yan, D. Zhao, X. Luo, , and W. Huang, “Energy har-
vesting from water flow in open channel with macro fiber composite,”
in AIP Advances 8, 9 (2018), vol. 8, 2018.

[147] M. Surbatovich, L. Jia, and B. Lucia, “Automatically enforcing fresh
and consistent inputs in intermittent systems,” in Proceedings of
the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, 2021.

[148] M. Takagi and K. Hiraki, “Compression in data caches with com-
pressible field isolation for recursive data structures,” in Euro-Par 2003
Parallel Processing: 9th International Euro-Par Conference Klagenfurt,
Austria, August 26-29, 2003 Proceedings 9, 2003.

[149] M. Takagi and K. Hiraki, “Field array compression in data caches
for dynamically allocated recursive data structures,” in International
Symposium on High Performance Computing, 2003.

[150] X. Tang, Z. Zhang, W. Xu, M. T. Kandemir, R. Melhem, and J. Yang,
“Enhancing address translations in throughput processors via compres-
sion,” in Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques, 2020.

[151] D. Tarjan, S. Thoziyoor, and N. Jouppi, “Cacti 4.0,” 2006.
[152] M. Thuresson, L. Spracklen, and P. Stenstrom, “Memory-link com-

pression schemes: A value locality perspective,” IEEE Transactions on
Computers, vol. 57, no. 7, 2008.

[153] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B.
Smith, M. E. Wazlowski, and P. M. Bland, “Ibm memory expansion
technology,” IBM Journal of Research and Development, 2001.

[154] R. Tremaine, T. Smith, M. Wazlowski, D. Har, K.-K. Mak, and
S. Arramreddy, “Pinnacle: Ibm mxt in a memory controller chip,” IEEE
Micro, vol. 21, no. 2, 2001.

[155] P.-A. Tsai, A. Sanchez, C. W. Fletcher, and D. Sanchez, “Safecracker:
Leaking secrets through compressed caches,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020.

[156] P.-A. Tsai and D. Sanchez, “Compress objects, not cache lines: An
object-based compressed memory hierarchy,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019.

[157] V. V. Tyagi and D. Buddhi, “Pcm thermal storage in buildings: A state
of art,” Renewable and sustainable energy reviews, vol. 11, no. 6, 2007.

[158] J. Van Der Woude and M. Hicks, “Intermittent computation without
hardware support or programmer intervention,” in USENIX Conference
on Operating Systems Design and Implementation, 2016.

[159] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarung-
nirun, C. Das, M. Kandemir, T. C. Mowry, and O. Mutlu, “A case
for core-assisted bottleneck acceleration in gpus: enabling flexible data
compression with assist warps,” ACM SIGARCH Computer Architec-
ture News, vol. 43, no. 3S, 2015.

[160] L. Villa, M. Zhang, and K. Asanovic, “Dynamic zero compression
for cache energy reduction,” in Proceedings 33rd Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO-33 2000, 2000.

[161] C. Wang, N. Chang, Y. Kim, S. Park, Y. Liu, H. G. Lee, R. Luo,
and H. Yang, “Storage-less and converterless maximum power point
tracking of photovoltaic cells for a nonvolatile microprocessor,” in In
Design Automation Conference (ASP-DAC), 2014.

[162] Welch, “A technique for high-performance data compression,” Com-
puter, vol. 17, no. 6, 1984.

[163] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The case for
compressed caching in virtual memory systems.” in USENIX Annual
Technical Conference, General Track, 1999.

[164] H. Wu, K. Nathella, M. Pabst, D. Sunwoo, A. Jain, and C. Lin,
“Practical temporal prefetching with compressed on-chip metadata,”
IEEE Transactions on Computers, vol. 71, no. 11, 2021.

[165] T. Wu, K. Ma, J. Hu, J. Xue, J. Li, X. Shi, H. Yang, and Y. Liu,
“Reliable and efficient parallel checkpointing framework for nonvolatile
processor with concurrent peripherals,” IEEE Transactions on Circuits
and Systems, vol. 70, no. 1, 2023.

[166] Y. Wu, B. Min, M. Ismail, W. Xiong, C. Jung, and D. Lee, “{IntOS}:
Persistent embedded operating system and language support for multi-
threaded intermittent computing,” in 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24), 2024.

[167] Y. Xie and G. H. Loh, “Thread-aware dynamic shared cache com-
pression in multi-core processors,” in 2011 IEEE 29th International
Conference on Computer Design (ICCD), 2011.

[168] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, and C. Li, “Extending the
lifetime of nvms with compression,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2018.

[169] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, C. Li, and W. Zhou,
“Improving performance of tlc rram with compression-ratio-aware data
encoding,” in International Conference on Computer Design, 2017.

[170] Y. Xu, J. Izraelevitz, and S. Swanson, “Clobber-nvm: log less, re-
execute more,” in Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 2021.

[171] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in
data caches,” in Proceedings 33rd Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO-33 2000, 2000.

[172] Y. Yang, J. S. Emer, and D. Sanchez, “Spzip: Architectural support
for effective data compression in irregular applications,” in 2021
ACM/IEEE 48th Annual International Symposium on Computer Ar-
chitecture (ISCA), 2021.

[173] C.-W. Yau, T. T.-O. Kwok, C.-U. Lei, , and Y.-K. Kwok, “Energy
harvesting in internet of things. in internet of everything,” in IEEE
Communications Magazine 53, 6 (2015), 2018.

[174] C.-H. Yen, H. R. Mendis, T.-W. Kuo, and P.-C. Hsiu, “Catch non-
determinism if you can: Intermittent inference of dynamic neural
networks,” ACM Transactions on Embedded Computing Systems, 2025.

[175] V. Young, P. J. Nair, and M. K. Qureshi, “Dice: Compressing dram
caches for bandwidth and capacity,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, 2017.

[176] J. Zeng, “Compiler and architecture co-design for reliable computing,”
Ph.D. dissertation, Purdue University, 2024.

[177] J. Zeng, J. Choi, X. Fu, A. P. Shreepathi, D. Lee, C. Min, and C. Jung,
“Replaycache: Enabling volatile cachesfor energy harvesting systems,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021.

[178] J. Zeng, J. Jeong, and C. Jung, “Persistent processor architecture,” in
Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, 2023.

[179] J. Zeng, H. Kim, J. Lee, and C. Jung, “Turnpike: Lightweight soft error
resilience for in-order cores,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 654–666.

[180] J. Zeng, S. Pei, D. Zhang, Y. Zhou, A. Beygi, X. Yao, R. Kachare,
T. Zhang, Z. Li, M. Nguyen et al., “Performance characterizations and
usage guidelines of samsung cmm-h,” IEEE Micro, 2025.

[181] J. Zeng, S. Pei, D. Zhang, Y. Zhou, A. Beygi, X. Yao, R. Kachare,
T. Zhang, Z. Li, M. Nguyen et al., “Performance characterizations and
usage guidelines of samsung cxl memory module hybrid prototype,”
arXiv preprint, 2025.

[182] J. Zeng, T. Zhang, and C. Jung, “Compiler-directed whole-system
persistence,” in 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA), 2024.

[183] Y. Zhang, D. Feng, Y. Hua, Y. Hu, W. Xia, M. Fu, X. Tang, Z. Wang,
F. Huang, and Y. Zhou, “Reducing chunk fragmentation for in-line delta
compressed and deduplicated backup systems,” in 2017 International
Conference on Networking, Architecture, and Storage (NAS), 2017.

[184] Y. Zhou, J. Zeng, J. Jeong, J. Choi, and C. Jung, “Sweepcache:
Intermittence-aware cache on the cheap,” in MICRO-56: 56th Annual
IEEE/ACM International Symposium on Microarchitecture, 2023.

[185] Y. Zhou, J. Zeng, and C. Jung, “Lightwsp: Whole-system persistence
on the cheap,” in 2024 57th IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2024.

[186] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, 1977.

[187] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Transactions on Information Theory, 1978.

	Introduction
	Background
	Energy Harvesting System
	Cache Compression Algorithm
	Adaptive Cache Compression

	Preparing Cache Compression for EHSs
	Problem Statement
	Overview of Kagura
	Implementation Details
	Determining When to Disable Compression
	Adaptive Threshold Tuning for Compression Disabling
	Putting It All Together

	Discussion
	Impact of Peripheral Operations
	Impact on Batteryless Artificial Intelligence of Things (AIoT) Systems
	Impact of Checkpoint Region Size

	Evaluation and Experimental Analyses
	Hardware Overhead Analysis
	Program Behaviors Across Power Cycles
	Run-Time Performance
	Impact of Arithmetic Intensity
	Cache Miss Rate
	Compression Operation Reduction
	Energy Efficiency
	Sensitivity Analysis
	EHS Designs
	Trigger Strategies for Kagura
	Integration with Other Cache Managements
	Adaptation Schemes for Rthres
	Increase Step for Rthres
	Power Cycle Number for Memory Operation Estimation
	Compression Algorithms
	Cache Sizes
	Cache Ways
	Cache Block Sizes
	Main Memory Sizes
	Main Memory Types
	Capacitor Sizes
	Power Traces
	Counter Bits

	Other Related Work
	Conclusion
	References

